
Emustru: User Guide

Manu Konchady

Copyright (C) 2009, Manu Konchady. Permission is granted to copy, distribute and/or modify

this document under the terms of the GNU Free Documentation License, Version 1.3 or any

later version published by the Free Software Foundation; with no Invariant Sections, no Front-

Cover Texts, and no Back-Cover Texts.

Contents

1. Introduction 1
1.1. Emustru Quizzes . 1
1.2. Emustru Features . 4

1.2.1. Spelling . 5
1.2.2. Vocabulary . 5
1.2.3. Sentence Analysis . 5
1.2.4. Grammar . 6
1.2.5. Essay Writing . 7

1.3. Why use Emustru? . 7
1.4. Installation . 8

1.4.1. Windows . 8
1.4.2. Linux . 10
1.4.3. Emustru . 11
1.4.4. Customization . 13
1.4.5. Troubleshooting . 13

2. Learning Vocabulary 17
2.1. Learning Algorithm . 18
2.2. Quiz Types . 19
2.3. Learning Spelling . 20
2.4. Vocabulary . 21
2.5. Word Games . 22

2.5.1. Hangman . 23
2.5.2. Partial and Unscramble Word Games 23
2.5.3. Following Word Game . 24
2.5.4. Word Relationships . 25

i

3. Building Sentences 27
3.1. Extracting Sentences . 27
3.2. Sentence Completion . 29

3.2.1. Sentence Features . 29
3.2.2. Single Word Sentence Completion 30
3.2.3. Double Word Sentence Completion 31

3.3. Find the Error . 31
3.4. Correct the Sentence . 32

4. A Grammar Checker 35
4.1. Requirements . 35
4.2. Emustru Grammar Checker . 36
4.3. Methods . 37

4.3.1. Manual Rule-based Systems 38
4.3.2. Automatic Rule-based Systems 40

4.4. Design of Emustru Grammar Checker 42
4.4.1. Preprocessing . 42
4.4.2. Creating a Rule Set . 43
4.4.3. Applying a Rule Set . 50

4.5. Evaluation . 51
4.6. Performance . 54

5. Essay Evaluator 57
5.1. How does it Work? . 58

5.1.1. Traits and Features . 59
5.1.2. Creating a Model . 61
5.1.3. Using a Model . 62

5.2. Emustru Essay Evaluator . 63
5.3. Applying AES . 66

5.3.1. Is AES Valid? . 67
5.3.2. Essay Prompt . 67
5.3.3. Essay Length . 69

Appendix A. Sources 71

ii

1. Introduction
Emustru is an open source English language tutor with features to learn vocabulary,
grammar, and essay writing using Computer Assisted Language Learning (CALL)
[1]. CALL is a personalized approach to facilitate the language learning process.
The two primary features of CALL are student-based or individualized learning and
interactive learning. In a student-based lesson, the material shown to each student
is adjusted based on prior performance. Students who are able to answer questions
without any errors will be able to complete lessons faster than students who miss
many questions. CALL is not a replacement for a teacher, but instead supplements
the lessons taught in a classroom with personalized material.
CALL has several advantages. One, a student can learn at his or her own pace

without the burden of keeping up with a class of students. Students from different
backgrounds will have customized lessons that are adjusted to the level of each
student. Two, a teacher can monitor the performance of a large number of students
with CALL tools. Software can keep track of individual information such as the
number of questions a student has missed as well as global information such as the
most frequently missed question. Feedback indicating the type of questions that a
class of 50 students or more have missed is much harder to identify manually. CALL
software can keep track of a large number of parameters to monitor the performance
of a class of students.

1.1. Emustru Quizzes
Emustru uses some of the philosophies behind the CALL approach to learn a lan-
guage. A student learns vocabulary through dynamic quizzes that are generated
based on prior performance. Sets of correct and incorrect responses per student are
maintained in database tables. Emustru generates a custom quiz using some of the

1

1. Introduction

questions that were missed earlier, a set of new questions, and a set of questions that
were answered correctly (see Figure 1.1).

Figure 1.1.: A Dynamic Student’s Quiz Generated from a Database Table

Incorrect Responses

Correct Responses

Unseen Questions

Missed Questions

Correctly Answered

New Questions

Student's Table

New Quiz

25%

25%

50%

Often a student loses interest in a static quiz after the first attempt. The same
questions with the same answers are repeated and it becomes relatively easy to
recollect the correct answers. Dynamic quizzes have several advantages over static
quizzes -

• A student uses a different set of questions in each session.

• Questions that have been missed are repeated till a student has correctly an-
swered such questions more than once.

• Questions that were correctly answered can be repeated as many times as
necessary to verify that a student did not answer a question correctly by chance.

• A new set of questions can be chosen by rank in every dynamic quiz.

2

1.1. Emustru Quizzes

The interactive question-answer format is a simple and attractive way to keep a
student’s attention during a session. Feedback is immediate and a student can verify
answers through an Explain button (see Figure 1.2). The sample vocabulary question
in Figure 1.2 includes a test word, five possible answers, and five buttons.

Figure 1.2.: A Sample Vocabulary Question

One of the five options for the test word, ensues is correct. Emustru picks the
test word by rank or at random from a given word list. The button will
evaluate the current question and return the next question. The evaluation will
indicate if the given answer was correct or not. The button shows the previous
question and answers. A question that was answered earlier cannot be modified.
The button is used to display the answer for the current question. Once this
button has been pressed, the question is assumed to be answered and the student
must continue to the next or previous question. The button is only active
following an evaluation of the question. This button returns a dictionary entry or a
group of sentences that use the test word to describe how the word is used in context
and its meanings.

3

1. Introduction

1.2. Emustru Features
There are many sites [2] on the Web to learn vocabulary, grammar, writing, and
reading skills for languages. The main skills a student of any new language would
need include -

Listening: A student listens to an audio passage and answers questions to evaluate
comprehension.

Writing: An essay prompt is provided and a student creates an essay of several
hundred words in response.

Vocabulary: A good knowledge of vocabulary is important in speaking, writing, and
comprehension.

Grammar: A student must understand the syntax of a language before writing sen-
tences that are grammatically correct.

Reading: A student’s grasp of the contents of a given audio passage is evaluated
with a series of questions.

The evaluation of listening tests the recognition of accents, pronunciation, vocab-
ulary, and comprehension. Reading is similarly evaluated, except that a student
must know the alphabet and spellings of words. Most students learn a vocabu-
lary of several thousand words in a language before acquiring a level of knowledge
sufficient to pass competitive exams. Learning vocabulary is a fairly routine task
and a computer is well-suited to make this task interactive and more attractive to
a student. Two of the popular sites on the Web to learn vocabulary are Quizlet
(http://www.quizlet.com) and FreeRice (http://www.freerice.com).
Learning the grammar of a language is more challenging than learning new words.

Languages like English have many rules and exceptions that can only be learnt
through practice. There are fewer grammar checker sites on the Web than sites for
building vocabulary and other types of word games. A grammar checker examines
the text of a document, one sentence at a time and returns errors and suggestions for
corrections. Most popular word processors include a grammar checker that identifies
syntax errors and generates potential corrections. Unfortunately, some grammar
checkers miss sentences that should be marked as incorrect. This is usually an

4

http://www.quizlet.com
http://www.freerice.com

1.2. Emustru Features

intentional feature to ensure that the percentage of flagged errors that are actual
errors is high.
There are even fewer sites on the Web to evaluate writing skills. Some sites return a

manual review of a text passage. This is of course more expensive than an automated
evaluator and is more likely to be accurate than an automated evaluation. Many of
the current automated text evaluators are proprietary of subscription-based.

1.2.1. Spelling
Emustru include features to learn some of the skills mentioned earlier. The spelling
quiz selects words from a given word list, that has been optionally ordered by rank,
and generates an audio file to “say” the word. The open source speech synthesizer
FreeTTS (http://freetts.sf.net) was used to generate the audio file. In some
cases, the spoken word is not easy to recognize.

1.2.2. Vocabulary
A word is selected from a pre-defined or user-provided word list. The meaning is
extracted from the WordNet [3] dictionary. Some words have more than one meaning
and just two of the most popular meanings are selected for a quiz. Several words
that are unrelated to the given word are added to the list of answers. A student
selects the meaning of a given word from a list of five options.
Emustru includes several word games including Hangman, jumbled words, and

partial words. Two lesser known games are finding the most likely word before or
after a given word. For example, the word strong is more likely to be seen before the
word tea than the word powerful, even though both words have the same meaning. In
another game, the student must identify the type of relationship (synonym, antonym,
or hypernym) between two or more given words.

1.2.3. Sentence Analysis
The Cloze (http://en.wikipedia.org/wiki/Cloze_test) test is a test where some
words of a sentence are removed and the student must identify the missing words
from a set of given words. This test evaluates vocabulary and knowledge of words

5

http://freetts.sf.net
http://en.wikipedia.org/wiki/Cloze_test

1. Introduction

in context. For example, the following sentence has two missing words and a set of
five choices.

For his eighth grade project, Ebright tried to find the cause of a _____
disease that kills ______ all monarch caterpillars every few years.

• neighborhoods, crudeness

• viral, nearly

• dilemmas, container

• tongued, unfolding

• deceleration, maneuvered

The words that are missing in the sentence are selected from a pre-defined or custom
word list. A student learns the context in which words chosen from the word list are
used in sentences. This test complements the earlier vocabulary test where a student
learnt the meaning of words.

1.2.4. Grammar
Most word processors include a grammar checker along with a spell checker to help
the writer create a document that has correct syntax and spelling. In general, a
grammar checker limits the number of false positives, i.e. the number of flagged
errors that are not valid. A writer is more likely to be annoyed by a grammar
checker that identifies errors in correct sentences and may be willing to tolerate
error sentences that are not detected.
Emustru uses a statistical rule-based grammar checker to find errors. A large

number of rules are constructed after observing part of speech tag and word patterns
in a corpus that is known to contain sentences with valid syntax. These patterns
are encoded in rules and stored in database tables. The grammar checker compares
patterns extracted from a test sentence with patterns saved in tables. Any pattern
that is rare or unusual is flagged as a potential error. The grammar checker in
Emustru is included the essay writing evaluation function.

6

1.3. Why use Emustru?

1.2.5. Essay Writing
The essay evaluation function in Emustru assigns a score based on a number of
extracted features from a short essay of about 300-400 words. Many of the current
competitive exams such as the SAT and IELTS include an essay writing question to
test an examinee’s vocabulary, grammar, and writing skill. Although, it is debatable
whether writing an essay in a short period of half an hour or less can actually test
an examinee’s creativity and writing skills, the essay writing question has become
popular.
Essay writing is usually the only free-form question in competitive exams, that

allows unstructured text answers. Most of the other types of questions are multiple
choice questions that can be machine graded. A human grader evaluates an essay and
assigns a score, say from 1 (Poor) to 6 (Excellent) based on an overall impression
of the essay. The human grader looks for grammatical mistakes, spelling errors,
language usage, and several other features to compute an overall score. Two or more
human graders may score the same essay to resolve errors that may arise during
the grading process. When the score from two graders for the same essay differs
by more than one, a third grader scores the essay. The Educational Testing Service
(ETS) has successfully replaced one of the two human graders with an automated
essay evaluator, E-rater([4]). In more than 90% of the graded essays, the absolute
difference between a human grader’s and the E-rater score were within one point.
The essay evaluator used in Emustru extracts features such as the number of

spelling errors, number of unique words, number of grammatical mistakes and several
other features to generate an overall score. The list of over 20 features is described
in Chapter 5.

1.3. Why use Emustru?
A manually generated quiz will typically be superior to a similar automatically gen-
erated quiz. The questions and answers in a manual quiz are carefully selected and
verified. A dynamic quiz attempts to reproduce this process using an algorithm.
Test writers are known to create questions and answers in fairly standard patterns.
Wrong answers are generated in a somewhat predictable manner. Emustru uses a
few simple heuristics to automatically generate a quiz based on some observations

7

1. Introduction

from a manual quiz. Some of the advantages of Emustru and dynamic quizzes are
listed below.

• Dynamic quizzes are well-suited to prepare for competitive exams such as the
SAT. A list of words to prepare for these exams is fairly long and the use of
dynamic quizzes makes it easy to generate questions ordered by word rank.
Further, a quiz can be tweaked to repeat certain questions that the student
found difficult.

• Some of the sites that have developed CALL software are subscription-based
or proprietary. Emustru is open source software and the data sources can be
customized to suit individual requirements.

• The Web interface of Emustru is intuitive and can be used without an Internet
connection

• The Emustru essay evaluator is one of the few open source alternatives to
commercial software such as Criterion (http://criterion.ets.org), Intel-
ligent Essay Assessor (http://www.knowledge-technologies.com/prodIEA.
shtml), and Intellimetric (http://www.vantagelearning.com/school/products/
intellimetric/).

• The statistical grammar checker included with Emustru can be modified to
find fewer or more errors in text.

1.4. Installation
Emustru has been tested on the Windows and Linux platforms. The application is
Web-based and runs on the Linux-Apache-MySQL-PhP (LAMP) or the Windows-
Apache-MySQL-PhP (WAMP) stacks. Several applications, such as the open source
course software Moodle, have been implemented on the LAMP/WAMP stacks.

1.4.1. Windows
This document will assume you have an existing stack on either the Windows
or Linux platforms. The WAMP project (http://www.wampserver.com/en/) dis-

8

http://criterion.ets.org
http://www.knowledge-technologies.com/prodIEA.shtml
http://www.knowledge-technologies.com/prodIEA.shtml
http://www.vantagelearning.com/school/products/intellimetric/
http://www.vantagelearning.com/school/products/intellimetric/
http://www.wampserver.com/en/

1.4. Installation

tributes the three components of the stack - Apache, MySQL, and PhP. The WAMP
distribution makes it simple to install the stack without downloading and customiz-
ing each of the individual components (see Figure 1.3).

Figure 1.3.: Configuring Apache, MySQL, and PhP with WAMP

Apache and MySQL run as services and must be started before installing Emustru.
The Administrative Tools of the Control Panel includes options to enable these
services at startup time. The default directory for WAMP is c:\wamp and the www
sub-directory under this directory is the location for Web projects. The Emustru
distribution can be unzipped in the c:/wamp/www directory. A default index.php
file is created in the www directory and can be viewed from the browser at the URL
http://localhost/index.php.
Initially the MySQL root userid may be created without a password. This is a

potential security problem and you can set a password for the root userid from the
command line with the following commands.

C:\ wamp\bin\mysql\ mysql5 .0.51b\bin > mysql mysql
>update mysql.user set Password = PASSWORD (’MyNewPass ’) where

User=’root ’;
>flush privileges ;

9

http://localhost/index.php

1. Introduction

Replace MyNewPass with a password for the root userid. WAMP includes the
phpmyadmin tool under the apps directory to manage the MySQL database tables.
This is a very useful tool to troubleshoot problems with database tables and is fairly
easy to use. The root MySQL password must be set in the config.inc.php file
under the phpmyadmin directory.

$cfg[’Servers ’][$i][’user ’] = ’root ’;
$cfg[’Servers ’][$i][’ password ’] = ’MyNewPass ’;

You can verify your installation by starting a browser session at http://localhost/
index.php. If both, MySQL and Php appear to be working, unzip the Emustru
distribution in the WAMP www directory. Then, open a browser session at http:
//localhost/emustru and continue as shown in section 1.4.3.

1.4.2. Linux
Many of the current Linux distributions include options to install a Web server
(Apache), a database server (MySQL) and PhP. If you have not installed these com-
ponents, then you can either install a separate package XAMPP, use the distribution
to add these components, or download each of the options separately.
The XAMPP (http://www.apachefriends.org/en/xampp.html) project is a multi-

platform tool to build the AMP stack on Linux, Windows, MacOS, and Solaris plat-
forms. XAMPP includes the same components as WAMP and a few others as well.
On Linux, the XAMPP distribution is a gzipped tar file, that can be unzipped in
an /opt directory. You will need to become the root user to complete the rest of
the installation. After unzipping the distribution, you can start Apache and MySQL
with the "lampp start" command from the top level installation directory. This
command will start Apache and MySQL if existing servers are not running on the
same ports.
Before starting XAMPP, you should stop any existing Web or database server

to avoid conflicts. The /etc/init.d directory may contain the scripts to start and
stop other Web and database servers. If you decide to make the XAMPP installation
override any existing Apache and MySQL installation, you can modify the startup
and shutdown scripts to start both servers from the XAMPP directory alone.

10

http://localhost/index.php
http://localhost/index.php
http://localhost/emustru
http://localhost/emustru
http://www.apachefriends.org/en/xampp.html

1.4. Installation

There are several security problems that need to be fixed before running the
servers. The command “lampp security” sets passwords to access the Web pages,
the MySQL database, a FTP server, and the Phpmyadmin tool. The script will also
limit network access to the MySQL server by modifying the my.cnf file in the etc
directory.
The root Web directory is the found in the htdocs directory under the instal-

lation directory. Emustru should be unzipped in this directory during installation.
The installation can be verified by starting a browser session pointing to the URL
http://localhost. You should see a page with an orange background and a number
of menu options.

1.4.3. Emustru
The screen shown in Figure 1.4 should appear, if the Emustru distribution has
been unzipped under the htdocs directory, from a browser session with the URL
at http://localhost/emustru/index.php. This screen is common to Linux and
Windows installations.
The installation screen in Figure 1.4 is based on a Windows installation. A Linux

installation is similar with the exception of the entries for the Web root directory,
MySQL root directory and Java Runtime directory. The MySQL userid should have
the authority to create a database and load tables. The mysqlimport utility found in
the bin directory under the root directory of the MySQL server, is used as a backup
if the load table command fails. In Windows, the java executable is found from
the environment variables that are set when Java is installed. However in Linux, the
java executable may not be found in the PATH variable and therefore the runtime
directory (i.e. the directory above the bin directory) may be required to run Java
code.
During the installation, about 30 database tables are loaded and two configuration

files - config.php and config.prp for PhP and Java respectively, are created. The
configuration files should be made read only after a successful installation since
these files contain a userid and password for the MySQL server. Both configuration
files are first created in a temp directory. In Windows, the temp directory may
be c:/WINDOWS/TEMP/emustru or C:/WINNT/TEMP/emustru and in Linux it may be
/tmp/emustru. The temporary files are copied to the Web root installation directory.

11

1. Introduction

Figure 1.4.: Emustru Installation Screen

In Linux, this is usually a problem, since the Web user (such as nobody, www, or
apache) does not have the authority to create files in the Web directories. The Linux
installation will end with the following message -

• The config.php could not be moved to the /opt/lampp/htdocs/emustru direc-
tory because of permissions.

• To complete the installation, you will need to copy the file

• 1./tmp/emustru/config_temp.php to /opt/lampp/htdocs/emustru/config.php
and

• 2. /tmp/emustru/config.prp to /opt/lampp/htdocs/emustru/java/data/config/config.prp

• cp /tmp/emustru/config_temp.php /opt/lampp/htdocs/emustru/config.php;

• cp/tmp/emustru/config.prp /opt/lampp/htdocs/emustru/java/data/config/config.prp

12

1.4. Installation

This installation assumes that MySQL and Apache have been installed under the
/opt/lampp directory. After copying the configuration files to the /opt/lampp direc-
tories, the login page for Emustru will be shown.

1.4.4. Customization
The default distribution comes with a word list of about 8,000 words and 6,500
sentences. Two additional sources of sentences and words can be downloaded from
SourceForge.net - brown.zip and sat.zip. The brown.zip file contains 25,000
words and 35,000 sentences from the Brown corpus [5]. The sat.zip file contains
8,500 words and 120,000 sentences extracted from e-books downloaded from the
Project Gutenberg [6].
Unzip both of these files in the install/table_data directory of the installation

directory. Then login as admin (initial password admin) and press the “Load Word
Table” button shown in Figure 1.5.
You can also add a list of words to one of the word list types. Emustru will accept

a file with one word per line in several formats. An optional number accompanying
the word is interpreted as a rank and words with higher ranks will be shown earlier
in quizzes than other words in a generated quiz. If no ranks are provided, all words
are assigned the same rank and a rank order quiz for such a word list, will fetch
words in alphabetic order. The words for questions in any quiz can be selected at
random or by rank order. An option to select an order type for the quiz is provided
before a quiz is generated.

1.4.5. Troubleshooting
The Java code uses a JDBC connector to access the MySQL database and will not
function if network access is disabled in MySQL. Network access is set through the
skip-networking option in the my.ini file. During a fresh installation, you may need
to clear out any existing log and configuration files from the temporary directory.

• There are several log files that contain messages indicating problems with the
installation or running of Emustru.

– The emustru.log file in the temporary directory contains messages from
problems found in the PhP or Java code.

13

1. Introduction

Figure 1.5.: Adding Words and Sentences to Emustru

– Entries in the Apache error log file, the MySQL log file, and a PhP error
log file may contain useful information to debug a problem.

• The essay evaluate function starts a shell script from PhP to run the Java code
and can be found in the temporary directory.

• Similarly, the other Java functions are run from PhP using the shell_exec
command which may not work if PhP is operating in safe mode.

14

1.4. Installation

• Finally, directory permissions in Linux are often a source of installation prob-
lems. Permissions and files left over from a previous installation may cause
problems in a new installation since some files cannot be removed.

15

1. Introduction

16

2. Learning Vocabulary
Before writing sentences, we need to know vocabulary to accurately express meaning
and convey messages to the reader. The English language has a vast vocabulary
(roughly half a million words) with many words adopted from other languages and
a complex set of rules and exceptions to build words. There is no easy way to learn
new words without studying each word separately. Some words can be deciphered
from their roots, but other words are harder to understand.
Fortunately, it is not necessary to learn a large number of words to write effectively

in English. Most competitive exams test from a word list of 10,000 to 20,000 root
words. However, even learning a list of 10,000 words is time consuming and routine.
A computer based system can make the task of learning new words more interesting.
Quizlet™ [7] is a Web-based system to learn words and their associated meanings.

A student uploads a list of words and associated meanings. Quizlet generates a set
of quizzes with questions generated at random to test the student. The type of
questions include multiple choice, true or false, and free form-based. The tedious job
of learning a word list is less tiresome with Quizlet.
Emustru includes a set of word games, a spelling quiz, and other word related

quizzes. Beyond making the study of words more interesting, the use of computer-
based learning can dynamically generate quizzes that are customized for a student.
In general, we can expect students at various skill levels in a random group. Most
students may fall in a mid-level range, a few students at an advanced level, and the
remaining students at a lower level. The students at an advanced level may prefer
to take quizzes with a large proportion of new words, while students at a lower level
may be overwhelmed with words from the same quizzes. Therefore, it makes sense
to repeat words for some students who appear to be having difficulty learning words,
while other students will be more motivated to take quizzes with new words.

17

2. Learning Vocabulary

2.1. Learning Algorithm
The learning algorithm is based on prior performance. At first, all the words in a
quiz are new words. Following a student’s attempt at a quiz, a statistics table is
populated with words that the student answered correctly or missed. In a successive
attempt, some words from the statistics table are used in a generative quiz. A
fraction (upto 25%) of the quiz may contain words that the student had missed in
an earlier attempt (see Figure 2.1).

Figure 2.1.: Generating a Quiz using the Statistics Table and a Word Collection

Student's Statistics Table

Word Status

Word Collection

Word Rank
Missed
Correct

10
5a

d x
y

Quiz a d x

Another fraction (upto 25%) of the quiz consists of words that the student an-
swered correctly. Sometimes, a student may have correctly guessed the answer to
a question and a second attempt will confirm if the student is sure of the answer.
The config.php file in the Emustru root directory contains parameters to limit the
number of question repetitions.
$CFG−>repeat_hangman = ’ 1 ’ ;
$CFG−>repea t_spe l l i n g = ’ 1 ’ ;

If the parameter $CFG->repeat_spelling is set to 0, then a word that was cor-
rectly spelled once will not be repeated in another quiz, otherwise, the same word
will be repeated n (based on the number in the config.php file) times in future
quizzes. It may not be desirable to have the same words appear in two consecutive

18

2.2. Quiz Types

quizzes. The $CFG->qinterval parameter sets the interval between repetitions of
the same word in a quiz type.
$CFG−>q in t e r v a l = ’ 3 0 ’ ;

The default interval between word repetitions is 30 minutes. In other words, a word
x that was misspelled in a quiz, will only appear in a successive quiz 30 minutes after
the current quiz. The interval parameter can be adjusted in the config.php file.

2.2. Quiz Types
Emustru includes a few options to customize a quiz (see Figure 2.2). New words
can be selected by rank order or at random from a word collection. When words are
selected by rank, the same words in order will appear in other quizzes. For example,
the words generated in a spelling quiz in rank order will be identical to the words of
a hangman quiz also generated in rank order. It may be easier for a student to learn
new words, if the same words appear in different quiz types, reinforcing the meaning
and spelling of the words.

Figure 2.2.: Quiz Options

The number of questions in a quiz is also specified in the same screen. The level
of difficulty defines the maximum length of a word in the quiz. A quiz of medium

19

2. Learning Vocabulary

difficulty will have words less than eight characters long, while a difficult quiz will
have words less than 24 characters long.

2.3. Learning Spelling
A spelling quiz is built using the specified word list and other options specified in
Figure 2.2. Each question consists of a single word with a keyboard like interface to
enter the characters of the word on a browser screen (see Figure 2.3).

Figure 2.3.: A Spelling Question with a Link to an Audio File

The keyboard consists of the 26 letters of the alphabet and the Back button.
Clicking on the Play button sends a generated audio file to the browser (see Figure
2.4). The FreeTTS speech synthesizer software (http://freetts.sf.net) is used
to generate the audio file for the word. In some cases, the quality of the audio is good
enough to hear a word very clearly, but in other cases, the pronunciation is difficult
to decipher. A few hints are included at the bottom of the screen (not shown) Figure
2.3 to assist a student.
The audio file is generated in the WAV format, that most browsers can play with

a plug-in for audio files. An alternate method is to generate a word file for each word

20

http://freetts.sf.net

2.4. Vocabulary

Figure 2.4.: Generating an Audio File for a Spelling Word

B
r
o
w
s
e
r

word
spelling.php

playaudio.php

Java

FreeTTS

Audio
File

create

filename

Client Server

filename

word

filename

audioaudio

and save the collection of files in the server. This is of course faster than calling the
FreeTTS Java library to generate an audio file.
The Explain button can only be pressed after a given answer has been evaluated.

A pop-up window with two tabs is shown when the Explain button is pressed. The
first tab returns the WordNet meanings of the word and the second tab runs a
Java program to find sentences that contain the word. Every word list type has an
associated searchable index of sentences. If a sentence is not found in the index for a
particular word list, the indexes of other word list types will be searched in sequence.
The pop-up window for word meanings and example sentences is common in several
quizzes.

2.4. Vocabulary
An individual possessing a large vocabulary finds it easy to precisely express meaning
in a sentence. Choosing the right word to convey an emotion or thought is critical
in Essay writing (see Chapter 5). Besides, a large vocabulary also helps a reader
understand a passage. Both, reading and writing are critical skills that an examinee
needs to score well in a competitive exam.
Many books have been written on techniques to increase one’s vocabulary. Most

of the techniques used include a worksheet-like format with a number of questions to

21

2. Learning Vocabulary

test the reader. In most cases the computer’s role has been to primarily to show the
same questions on a monitor and tabulate the results. Emustru is different in that
all questions are dynamically generated and customized for a particular student.
However, word selection in a vocabulary quiz is slightly more complicated than in

a spelling quiz. Some words have more than one meaning and a single question can
only test for one meaning. It is common to find a less frequently used meaning of a
word being tested in an exam. Emustru picks the top (most frequently interpreted)
two meanings of a word in a quiz.

Figure 2.5.: One Question per Word Meaning

Since two questions with the same word and different meanings in the same quiz
can be confusing to the student, the questions are separated by the question interval,
$CFG->qinterval. The four words that are incorrect in the list of five possible
meanings are selected such that there is no overlap with the correct meaning.
For example, all the meanings of the word prosaic in Figure 2.5 must be excluded

from the list of four misleading meanings. A hyponym of the word is used as one
of the four meanings to make the selection of the correct meaning non-trivial to the
student. The remaining three meanings are selected at random based on the suffix
or prefix of the word.

2.5. Word Games
Emustru includes several word games that use the same word lists to learn vocab-
ulary. Words are selected as before - by rank, difficulty, and word list type. (see
Figure 2.2).

22

2.5. Word Games

2.5.1. Hangman
This is a fairly well known game to find a word within n chances. Letters are selected
from a screen-based keyboard and shown in the word, if they appear in the word.
Vowels and a few consonants such as r, s, t, and n are the most frequent letters in
words.

Figure 2.6.: Hangman Word Game

2.5.2. Partial and Unscramble Word Games
The partial word game is a similar game with a few letters of the word that are
shown (see Figure 2.7). The letters that are shown are 2 or more consecutive letters

23

2. Learning Vocabulary

from the beginning, middle, or end of the word. The student has to complete the
remainder of the word. The meaning of the word is shown as a hint.

Figure 2.7.: Partial Word and Unscramble Questions for the word Affable

The right hand side of Figure 2.7 has the equivalent unscramble question for the
same word. The letters of the word are jumbled and the student must enter the
letters of the word in the correct order.

2.5.3. Following Word Game
Roughly 5700 popular two word phrases were selected from the Brown corpus and
saved in the wn_phrases table. The first or second word of the phrase is shown in a
question and the student must guess which is the most likely following or preceding
word respectively (see Figure 2.8).

Figure 2.8.: Guess the Preceding Word

The second word bank of the two word phrase central bank, is shown with a list
of possible preceding words. The purpose of this game is to learn phrases such as
strong tea that is more likely than a similar meaning phrase, powerful tea. Roughly

24

2.5. Word Games

half of the questions in the quiz will show a preceding word and the remainder the
following word of a phrase.

2.5.4. Word Relationships
This game is based on some of the word relationships defined in the WordNet [3]
dictionary / thesaurus. Two sets of words that are related by one of four relationships
are shown in a question (see Figure 2.9). The four relationship types are hyponyms,
hypernyms, synonyms, and antonyms.

Figure 2.9.: A Word Relationship Question

A word x maybe related to more than one word in a single relationship. For
example, the word affable has the following synonyms amiable, cordial, and genial.
The antonym relationship is defined between a single word x and another word
y. This game is surprisingly difficult since it requires a student to think of word
meanings in terms of relationships and is more abstract than the previous games.

25

2. Learning Vocabulary

26

3. Building Sentences
A sentence is a sequence of words such that the order of words is syntactically valid
and is intelligible. Consider the order of a set of seven words in the following four
examples.

1. Moon beautiful there is a tonight out.

2. A beautiful moon is there out tonight.

3. Tonight there is a beautiful moon out.

4. There is beautiful moon out tonight.

The last sentence is both syntactically valid and intelligible while the first three
sentences are non-sensical. In this chapter and the following chapter, the syntax of
language alone is studied. It is quite simple to make non-sensical sentences such
as “Colorful ideas sleep furiously” that are yet syntactically valid. Deciphering if a
sentence is intelligible requires a large knowledge base to ascertain the meaning of a
sentence which cannot be extracted from the sum of the meanings of the individual
words.
Sentences are constructed using a complex set of rules that are not described here.

Instead, patterns and usage of words in sentences is learnt from a sentence collection
extracted from books, articles, and other text documents. There are many sources
of text documents and Emustru uses two main text sources - The Brown Corpus [5]
and the Project Gutenberg [6].

3.1. Extracting Sentences
The Brown corpus is a set of roughly 35,000 sentences collected in the 1960s from
various text genres. The corpus is divided into 500 files. The total number of words

27

3. Building Sentences

is 1.1 million, of which roughly 25,000 were unique. Each of the sentences in the
corpus is printed on a single line of a file. This of course make sentence extraction
from the Brown corpus trivial. Every word of every sentence is also part of speech
(POS) tagged. The Brown corpus uses a tag set of about 100 POS tags.
The project Gutenberg is a large collection of e-books written in plain text or for-

matted in Adobe PDF and Microsoft Word formats. The text extracted from a plain
text file for an average e-book will contain a large collection of sentences. However,
there are no defined sentence boundaries to demarcate sentences. Instead, the most
likely sentences are extracted using a heuristic algorithm. A period character is the
most widely used sentence separator, but there are exceptions. For example, the
middle initial of a name contains a period, the letters of an acronym are separated
by periods, and more recent words such as .com and SourceForge.net contain em-
bedded periods. The sentence extractor in Emustru uses a heuristic algorithm from
LingPipe[8] to find sentences (see Figure 3.1).

Figure 3.1.: Extracting Sentences from the Brown Corpus and Project Gutenberg

Brown
Corpus

Project Gutenberg
Books

Extract Text

Extract Sentences

Populate Brown
Sentence Table

Populate SAT
Sentence Table

The sentence tables in Emustru contain the sentence, the POS tags for each word
of the sentence, and the source of the sentence. The Lucene search engine API was
used to construct separate indexes for each of the sentence tables. The indexes are
searched for sentences that contain a given word. Matching sentences are shown as
examples of word usage in a sentence.

28

3.2. Sentence Completion

3.2. Sentence Completion
This quiz tests the skill of a student in identifying the missing word from a sentence,
given a set of words. The selective removal of words in a sentence is also called a
Cloze test to measure a student’s comprehension of a sentence and vocabulary (see
Figure 3.2). The removal of words could be mechanical such as the deletion of every
5th word of a sentence or selective. In a selective deletion, words for removal are
chosen from a list or based on some criteria.

3.2.1. Sentence Features
A sentence is first selected for a question and then one or two words are selectively
deleted. The same sentence is not used more than once in a quiz and less than twice
for any particular student. The use of different sentences not only makes a quiz more
interesting, but also prevents students from answering a question by memorizing the
sequence of words in a sentence.
Long sentences are not desirable for beginner students, since such sentences can

be difficult to comprehend. A student can set a difficulty level to limit the length of
a sentence. At the easy level, the maximum length of a sentence is set to 20 words
and at the medium and difficult levels the maximum sentence length is 30 and 40
words respectively.
The sentences selected in a sentence must also have words from the associated word

list type. Finally, a sentence with one of the following words - not, but, although, how-
ever, despite, no, none, never, merely, always, often, gradually, sometimes, because,
since, like, therefore, and so is given higher priority than other sentences. These
words are also known as discourse markers and are used to present information in a
formal manner.
For example, the discourse markers - regarding, as far as, and as for may change

the subject in the fragment that follows a marker. Similarly, markers like however
and despite are used to present two contrasting ideas and words like since and there-
fore illustrate a subsequent statement that should logically follow a given statement.

29

3. Building Sentences

3.2.2. Single Word Sentence Completion
This is a common test in language exams. A student uses the visible words of a
sentence to guess the most likely word that was deleted based on the context and
meaning of the sentence. On occasion, more than one word may be removed. A
sentence question with two words missing may be harder to answer than a sentence
with a single word missing.

Figure 3.2.: A Single Missing Word from a Sentence

In Figure 3.2, the sentence presents two contrasting thoughts. The first part of
the sentence describes a writer from the sixteenth century, while the second part
of the sentence is about an influential person describing a concept. The correct
word seminal is the most logical word to complete the sentence that compares two
influential writers from different times. The other answer words are automatically
selected by a function that first looks for a hyponym and then selects three other
words that are not one of the synonyms and not close to the correct word. We
define close in terms of the number of characters and operations needed to transform
one word into another. These restrictions are necessary to avoid words that may be
inflections of the correct word.

30

3.3. Find the Error

3.2.3. Double Word Sentence Completion
Two words omissions in sentences are not necessarily harder than single word omis-
sions. However, an automatic question generator must carefully select the omitted
words from a sentence (see Figure 3.3). In most cases, the two omitted words will
be separated by one or more words.

Figure 3.3.: Two Missing Words from a Sentence

The same strategy adopted for single missing words can be used here. The most
likely first word is identified followed by a check for the correctness of the second
word. Sometimes, the first word may be difficult to identify in the given choices and
eliminating the wrong answers from the second word can lead to the correct answer.

3.3. Find the Error
These types of sentence questions present a sentence with selected fragments un-
derlined that may be correct or incorrect. A set of four words are underlined in a
sentence and one of these four words may be incorrect in the context of the sen-
tence. The student needs to identify the incorrect word (see Figure 3.4). A few of
the questions may contain zero errors, i.e. the sentence is correct as-is and does not
need any modification. This is usually the 5th choice.

31

3. Building Sentences

Figure 3.4.: Spot the Error in a Sentence

In Figure 3.4, four words have been underlined with the letters A through D. One
of these words may be incorrect in the sentence. The last choice E is selected when
the sentence appears to be error-free. In this example, the word ridding in choice C
has been automatically replaced with the word riding. The student is not required
to give the correct answer in this type of question and instead needs to merely select
the word that is incorrect. Sometimes more than word may be underline in a single
choice. For example, the two word phrases himself of or as if may be possible answer
choices.
Emustru attempts to duplicate the human process used to generate such questions.

First, a valid sentence is selected from a collection of sentences. In 20% of the
generated sentences, no changes are made to the original sentence. In the remaining
80% of the sentences, a word is randomly selected and replaced with another word
that shares a common stem. For example, the two words riding and ridding share
the same stem rid . Similarly, the word accepting may be replaced with the past
tense of the word accepted, since both words share the same root accept.

3.4. Correct the Sentence
Another type of sentence question contains a fragment of 5-10 words that is under-
lined (see Figure 3.5). The entire fragment may be correct as-is or incorrect.

32

3.4. Correct the Sentence

Figure 3.5.: Select the Best Fragment to Complete the Sentence

The answer choices contain other sentence fragments that are corrections for the
given sentence, if it appears to be incorrect in the given form. The fragment that
has been underlined has been selected at random from a sliding window of 12 words.
The correct fragment for the sentence is the fourth choice shown in the Figure 3.5. A
few of the words in the remaining choices have been altered from singular to plural
or vice versa.

33

3. Building Sentences

34

4. A Grammar Checker
A grammar checker verifies free-form unstructured text for grammatical correctness.
In most cases, a grammar checker is part of an application, such as a word processor.
In this paper, a Web-based grammar checker is implemented to verify the correctness
of short essays that are submitted by students in competitive exams. An essay can
vary from a single paragraph to a medium sized document made up of several pages
(~ 100 Kbytes).
The earliest grammar checkers in the 80s searched for punctuation errors and a list

of common error phrases. The task of performing a full blown parse of a chunk of text
was either too complex or time consuming for the processors of the early PCs. Till
the early 90s, grammar checkers were sold as separate packages that were installed
with a word processor. The software gradually evolved from a set of simplistic tools
to fairly complex products to detect grammatical mistakes beyond a standard list of
common style and punctuation errors.
While a grammar checker verifies the syntax of language, a style checker compares

the use of language with patterns that are not common or deprecated. A style checker
may look for excessively long sentences, out-dated phrases, or the use of double
negatives. We have not considered style checking in this work and have focused
on syntax verification alone. Further, there is no verification of semantics. For
example, the sentence - “Colorless green ideas sleep furiously.” was coined by Noam
Chomsky to illustrate that sentences with no grammatical errors can be nonsensical.
Identifying such sentences requires a large knowledge corpus to verify the semantics
of a sentence.

4.1. Requirements
The main purpose of a grammar checker is to help create a better document that
is free of syntax errors. A document can be analyzed in its entirety or one sentence

35

4. A Grammar Checker

at a time. In a batch mode, the entire text of a document is scanned for errors and
the results of a scan is a list of all possible errors in the text. An online grammar
checker will identify errors as sentences are detected in the text. Grammar checkers
can be computationally intensive and often run in the background or must be ex-
plicitly invoked. One of the primary requirements for a grammar checker is speed. A
practical grammar checker must be fast enough for interactive use in an application
like a word processor. The time to analyze a sentence should be a few milliseconds
or less following an initial startup time.
The second requirement is accuracy. A grammar checker should find all possible

errors and correct sentences as well. There are two types of errors. The first type
of error is a false positive or an error that is detected by the grammar checker but
which is not an actual error. The second type of error is an actual error that was
not detected by the grammar checker (a false negative). In general, the number of
false positives are minimized to avoid annoying the user of the application.
The third requirement to limit the number of correct sentences that are flagged

as errors by the grammar checker, is related to the second requirement. At first, we
may assume that simply setting the threshold high enough for an error should be
sufficient to satisfy this requirement. However, a grammar checker with a threshold
that is too high will miss a large number of legitimate errors. Therefore, the threshold
should be such that the number of false positives are minimized while simultaneously
reducing the number of false negatives as well. The accuracy parameter defined in
the Evaluation section combines these two attributes in a single value, making it
possible to compare grammar checkers.
Since it is difficult to set an universal threshold that is appropriate for all situations,

the user can select a level of “strictness” for the grammar corrector. A higher level
of strictness corresponds to more rigorous error checking.

4.2. Emustru Grammar Checker
An online Web-based essay evaluator in Emustru accepts a chunk of text written in
response to an essay type question, that elicits the opinion of the writer regarding
an issue or topic. The essay evaluator uses the number of grammatical errors in
addition to other parameters such as the use of discourse words, organization, and
the number of spelling errors in the text to assign an overall evaluation score.

36

4.3. Methods

The essay evaluator returns a score and a category for the essay along with a list
of parameters computed from the text of the essay. The grammar checker returns
results for each sentence extracted from the text. A sentence that is incorrect is
flagged and a description explaining the error along with a suggestion is given.

Sentence: My farther is fixing the computer.

Description: The tag an adverb, comparative is not usually followed by is

Suggestion: Refer to farther and is

The words in the sentence that are incorrect are highlighted. The description and
suggestion are generated automatically based on the type and location of the error.
The checker marks words in the sentence that is part of an error and subsequent
errors due to the same words are ignored. Therefore, some sentences may need to
be corrected more than once.
A ruleset is automatically generated from a tagged corpus and used to detect

potential errors. This method is purely statistical and will be inaccurate when the
tagged corpus does not cover all possible syntax patterns or if the tagged corpus
contains mis-tagged tokens. Further, since the grammar checker uses a trained POS
tagger, the accuracy of the checker is constrained by the correctness of the POS tags
assigned to individual tokens of sentences.
Despite these inherent problems with a statistically-based grammar checker, the

results are comparable with the grammar checker used in the popular Microsoft
Word™ word processor. A sample corpus of 100 sentences made up of 70 correct
and 30 incorrect sentences was used in the evaluation. The accuracy of the grammar
checker can be adjusted using a likelihood parameter. The grammar checker has
also been evaluated using the standard Information Retrieval recall and precision
parameters.

4.3. Methods
Grammar checkers first divide a chunk of text into a set of sentences before detecting
any errors. A checker then works on individual sentences from the list of sentences.
Two tasks that are necessary in all grammar checkers are sentence detection and

37

4. A Grammar Checker

part of speech (POS) tagging. Therefore, this dependency limits the accuracy of
any grammar checker to the combined accuracy of the sentence detector and POS
tagger. Sentence detectors have fairly high precision rates (above 95%) for text that
is well-written such as newswire articles, essays, or books. POS taggers also have
high accuracy rates (above 90%), but have a dependency on the genre of text used
to train the tagger.
Two methods to detect grammatical errors in a sentence have been popular. The

first method is to generate a complete parse tree of a sentence to identify errors. A
sentence is parsed into a tree like structure that identifies a part of speech for every
word. The detector will generate parse trees from sentences that are syntactically
correct. An error sentence will either fail during a parse or be parsed into an error
tree.
One problem with this approach is that the parser must know the entire grammar

of the language and be able to analyze all types of text written using the language.
Another problem is that some sentences cannot be parsed into a single tree and
there are natural ambiguities that cannot be resolved by a parser. The open source
word processor AbiWord uses a parser [10] from Carnegie Mellon University to find
grammatical errors.
The second method is to use a rule-based checker that detects sequences of text

that do not appear to be normal. Rule-based systems have been successfully used
in other NLP problems such as POS tagging [4]. Rule-based systems have some ad-
vantages over other methods to detect errors. An initial set of rules can be improved
over time to cover a larger number of errors. Rules can be tweaked to find specific
errors.

4.3.1. Manual Rule-based Systems
Rules that are manually added can be made very descriptive with appropriate sugges-
tions to correct errors. LanguageTool [3] developed by Daniel Naber is a rule-based
grammar checker used in OpenOffice Writer and other tools. It uses a set of XML
tagged rules that are loaded in the checker and evaluated against word and tag
sequence in a sentence. A rule to identify a typo is shown below.
<rule id="THERE_EXITS" name="Possible typo: ’There exits’
(There exists)">

38

4.3. Methods

<pattern mark_from="1"><token>there</token>
<token>exits</token> </pattern>
<message>Possible typo. Did you mean <suggestion>
exists </suggestion>? </message>
<example correction="exists" type="incorrect"> There
<marker>exits</marker> a distinct possibility.
</example>
<example type="correct"> Then there exists a distinct
possibility. </example>
</rule>
Every rule begins with id and name attributes. The id is a short form name for the

rule and the name attribute is a more descriptive text that describes the use of the
rule. The pattern tags describe the sequence of tokens that the checker should find
in a sentence, before firing this particular rule. In this example, the two consecutive
tokens – there and exits define the pattern.
Once a rule is fired, a message and a correction is generated. Since rules are

manually generated in LanguageTool, the error description and correction are very
precise. The section of text from the sentence that matches the pattern can be
highlighted to indicate the location of the error in the sentence.
A rule with tokens in a pattern is quite specific, since the identical tokens must

occur in the matching sentence, in the same order as the tokens in the pattern.
More general rules may use POS tags instead of specific tokens in the pattern. For
example, a rule may define a pattern where a noun tag follows an adjective tag. This
particular order of tags is rare in English and is a potential error.
LanguageTool uses many hundreds of such rules to find grammatical errors in a

sentence. Some of the patterns of these rules include regular expression-like syntax
to match a broader variety of tag and token sequences. Although, LanguageTool is
a very precise grammar checker, there are two drawbacks. One, the manual main-
tenance of several hundreds of grammar rules is quite tedious. It has become a
little simpler to collaboratively manage large rule sets with the use of Web-based
tools. Two, the number of rules to cover a majority of the grammatical errors is
much larger. Therefore, the recall of LanguageTool is relatively low. Finally, each
language requires a separate set of manually generated rules.

39

4. A Grammar Checker

Other rule-based checkers include EasyEnglish from IBM Inc. and a Constituent
Likelihood Automatic Word-tagging System (CLAWS) probabilistic tagger to iden-
tify errors. The well known grammar checker used in Microsoft Word is closed source
and many of the other grammar checkers are similarly not available to the public.
The design of the Emustru grammar checker is based on a probabilistic tagger sug-
gested by Atwell [5]. Rules are generated automatically from a tagged corpus and
errors are identified when low frequency tag sequences are observed in a sentence.
The assumption is that a frequent tag sequence in a tagged corpus that has been
validated is correct.

4.3.2. Automatic Rule-based Systems
Grammar checkers based on automatically generated rule sets have been shown to
have reasonable accuracy [6,7] to be used in applications such as Essay Evaluation.
The automated grammatical error detection system called ALEK is part of a suite
of tools being developed by ETS Technologies, Inc. to provide students learning
writing with diagnostic feedback. A student writes an essay that is automatically
evaluated and returned with a list of errors and suggestions. Among the types of
errors detected are spelling and grammatical errors.
The ALEK grammar checker is built from a large training corpus of approximately

30 million words. Corpora such as CLAWS and the Brown corpus, characterize lan-
guage usage that has been proofread and is presumed to be correct. The text from
these corpora is viewed as positive evidence that is used to build a statistical lan-
guage model. The correctness of a sentence is verified by comparing the frequencies
of chunks of text from the test sentence with similar or equivalent chunks in the
generated language model.
A collection of ill-formed sentences constitutes negative evidence for a language

model. Text chunks from a sentence that closely match a language model built from
negative evidence are strong indicators of potential errors. However, it is harder to
build a corpus of all possible errors in a language. The number and types of errors
that can be generated are very large. Consider a four word sentence.
My name is Ganesh.
There are 4! or 24 ways of arranging the words of this particular sentence, of

which only one is legitimate. Other sources of errors include missing words or added

40

4.3. Methods

words that make ill-formed sentences. The construction of a corpus made up of neg-
ative evidence is time consuming and expensive. Therefore like ALEK, the Emustru
grammar checker uses positive evidence alone to build a language model.
Text is preprocessed (see Preprocessing section) before evaluation. A grammar

check consists of comparing observed and expected frequencies of words / POS tag
combinations. This same method is used to identify phrases such as “New Delhi” or
“strong tea” in text. Bigram tokens such as these are seen more frequently than by
chance alone and therefore have a higher likelihood of occurrence.
Consider the phrase “New York” in the Brown corpus. The probability of observing

the word “York” when it is preceded by the word “New” is 0.56, while the probability
of observing “York” when it is preceded by any word except “New” is 0.00001. These
probabilities along with individual word counts are used to find the likelihood that
two words are dependent.
The log-likelihood measure [7] is suggested when the observed data counts are

sparse. An alternate mutual information measure compares the expected relative
frequency of a bigram in the corpus to the expected relative frequency assuming the
bigram is independent.

MI = log(p(name−is)
p(name)×p(is))

where p(name-is) is the probability of the bigram “name is” and the denominator
is the product of the unigram probabilities of “name” and “is”. Both the mutual
information and log-likelihood measures have been used in the Emustru grammar
checker. The log-likelihood measure is used when the number of occurrences of one
of the words is less than 100 (in the Brown corpus).
A generated statistical language model is a large collection of word/tag pairs The

occurrence of words and tags in text is not independently distributed, but instead
has an inherent association built in the usage patterns that are observed in text. For
example, we would expect to see the phrase “name is” more often than the phrase
“is name”. A rule would assign a much higher likelihood for the phrase “name is”
than the phrase “is name”. The design for the ruleset used in the Emustru grammar
checker is based on a large number of these types of observations.

41

4. A Grammar Checker

4.4. Design of Emustru Grammar Checker
The design of the Emustru grammar checker is made up of three steps. The first
preprocessing step is common to most grammar checkers. Raw text is filtered and
converted to a list of sentences. Text extracted from files often contains titles, lists,
and other text segments that do not form complete sentences. The filter removes
text segments that are not recognizable as sentences. The text of each extracted
sentence is divided into two lists of POS tags and tokens. Every token of a sentence
has a corresponding POS tag. The lists of tags and tokens for a sentence are passed
to the checker.
The second step is to generate a rule set that will be used by the checker. In this

step, four tables consisting of several thousand rules are automatically generated
from a tagged corpus and lists of stop words and stop tags. The final step is the
application of the generated rules to detect errors. The lists of tokens and tags are
analyzed for deviations from expected patterns seen in the corpus. Sequences of tags
and tokens are evaluated against rules from four different tables for potential errors.
The first error in a tag / token sequence that may have multiple errors is returned
from the grammar checker. This limits the total number of errors per sentence.

4.4.1. Preprocessing
A pipeline design is used in the Emustru grammar checker. The raw text is first fil-
tered and converted into a stream of sentences. The sentence extractor from LingPipe
is used to extract sentences from the text (see Figure 4.1). The sentence extractor
uses a heuristic method to locate sentence boundaries. The minimum and maximum
lengths of sentences are set to 50 and 500 characters respectively. Most English
sentences end with a sentence terminator character, such as a period, comma, or a
exclamation. These characters are usually followed by a space and the first word of
the following sentence or the end of the text.
The sentence extractor will fail to extract sentences that do not separate the

sentence terminator from the first word of the next sentence. Instead a complex
token such as abc.com or an abbreviation will be assumed. A POS tagger accepts a
list of tokens from a sentence and assigns a POS tag to each token. The output from
the preprocessing step is a list of tokens and associated tags per extracted sentence.
Most of the tokens in a sentence can be extracted by simply splitting the sentence

42

4.4. Design of Emustru Grammar Checker

Figure 4.1.: Extracting List of tokens and POS tags
Raw Text

Filter

Sentence Extractor

Tokenizer

POS Tagger

List of
Tags

List of
Tokens

string when a whitespace is observed. Although this works for most tokens, some
tokens such as I’ll or won’t are converted to their expanded versions “I will” and
“will not”. Other tokens such as out-of-date and Sourceforge.net are not split into
two or more tokens. Tokens that contain periods such Mr. or U.S. are retained as
is.

4.4.2. Creating a Rule Set
The rule set used in the grammar checker is a collection of four database tables.
A tagged corpus and lists of stop words and tags are used to build the set of rule
database tables (see Figure 4.2). The rule set is created once before the grammar
checker can be applied. A modified rule table must be re-loaded in the database to
take effect.

43

4. A Grammar Checker

4.4.2.1. Unigrams

The first table is the unigram table. This table contains the most common tags for
words in the dictionary. A POS tag y that was assigned to a word x in fewer than 5%
of all cases in the tagger corpus is noted in a rule for x. Any sentence that contains
the word x tagged with y is considered a potential error by the checker. The types
of errors detected are pairs of words that are used incorrectly such affect and effect
or then and than. For example, the probability of finding the word affect used as a
noun was less than 3% in the Brown corpus. The unigram rule for the word affect
will detect the erroneous use of the word in the sentence below.
We submit that this is a most desirable affect of the laws and one of its principal

aims.
The grammar checker returns the following description - “The word affect is not

usually used as a noun, singular, common” and the suggestion - “Refer to affect, did
you mean effect”. There are numerous other pairs of such words that are often mixed
up, such as bare / bear, accept / except, and loose / lose.

Figure 4.2.: Create a Ruleset made up of four Database Tables.

T
a
g
g
e
d

C
o
r
p
u
s

Create
Unigrams

Create
Bigrams

Create
Trigrams

Create
Quadgrams

List of
Words

List of
Stopwords

List of
Stoptags

List of
Stopwords

MySQL DB

44

4.4. Design of Emustru Grammar Checker

4.4.2.2. Bigrams

The bigram tag table is constructed by observing tag sequences in the corpus and
computing a likelihood measure for each tag sequence. Consider the erroneous sen-
tence – “My father fixing the computer.”. The tag sequences extracted from this
sentence and their likelihoods are shown in Table 4.1. The START and END tags
are added to the beginning and the end of the sentence respectively.

Table 4.1.: Bigram Tag Sequences for an Erroneous Sentence
Token Tag Sequence Likelihood Error
My START-PP$ 0.33 No

father PP$-NN 1.93 No
fixing NN-VBG -1.11 Yes
the VBG-AT 0.71 No

computer AT-NN 1.90 No
. NN-. 1.32 No

All the tag sequences in Table 4.1 have positive likelihoods with the exception of
the NN-VBG tag sequence. The likelihood of this tag sequence is the likelihood of a
verb or present participle following a noun. It is negative since a present participle is
usually preceded by a present tense verb such as is. These types of errors are found
in sequences of bigram tags.
Other types of bigram sequences include tag-word and word-tag sequences. Words

found in text are separated into two sets – open class and closed class words. The
open class set contains mainly nouns, adjectives, verbs, and adverbs. These words
are numerous and together are found often in text. The individual frequency of a
noun or adjective is typically small compared to the frequency of a closed class word.
Conjunctions, prepositions, and articles are fewer in number but occur often in text.
Golding [9] showed that it is possible to build context models for word usage to
detect errors. The context of a word x that does not match the context defined in
the bigram table for x is a potential error.
The words that are used most frequently in the tagged corpus are selected in a

stop list that includes words such as – the, and, of, and did. Consider tag-word
rules for the word the that model the context of tags before the stop word. An

45

4. A Grammar Checker

adjective is rarely seen before the word the. The rule with the “JJ-the” context will
detect an error in the sentence – “Can you make large the photo?”. Similarly in the
sentence - “The goal to find was who attended.” the word-tag rule for the “was-WPS”
context detects an error in the word sequence “was who”. All three types of sequence
rules – tag-tag, tag-word, and word-tag are used to detect bigram error sequences in
sentences.

4.4.2.3. Trigrams

The use of trigrams to model word / tag usage requires a very large corpus. Consider
the Brown corpus with roughly 100 POS tags. The maximum number of trigram tag
sequences that can be generated is one million. The number of words in the Brown
corpus is one million and is clearly not sufficient to model the usage patterns of all
possible trigram tag sequences.
Instead, the problem is limited to modeling a much smaller set of trigram tag

sequences. The modeled set of tag sequences represents tags that are frequently
found in grammatically incorrect sentences. For example in the sentence - “I did not
wanted to clean the room.”, the verb want is used in the wrong tense. The sentence
is correct if the present tense of the word is used instead of the past tense. We can
collect pairs of such tags that are interchanged in grammatically incorrect sentences.
These tags form a stop tag list that have one or more replacement tags that may fix
the error. The grammar checker returns the following description and suggestion for
the incorrect sentence above.
Description: The fragment not wanted to is rare.

Suggestion: Possible agreement error: Replace wanted with verb, base: uninflected
present ...

The detector uses the tags before and after the stop tag to build the context of the
given sentence. The likelihood of the tag sequence is extracted from the database
table and compared with the likelihood of another tag sequence that replaces the
stop tag with a substitute tag. An error is generated when the likelihood of the tag
sequence with the substitute tag is much higher than the likelihood with the original
tag. Consider another incorrect sentence - “She come to college late every day.”. The
present tense of the verb come is used instead of the past tense. Here, the grammar
checker returns -

46

4.4. Design of Emustru Grammar Checker

Description: The fragment She come to is rare.

Suggestion: Possible agreement error: Replace come with verb, past tense.

The purpose of using trigrams is to identify errors that the bigram tables fail to
detect. For example, in the first sentence the token sequences “not wanted” and
“wanted to” are both legitimate token sequences independently. However, the com-
bined tag sequence “not wanted to” is rare and is a potential error. The replacement
of the past tense tag with the present tense tag produces a tag sequence that is more
likely than the original tag sequence. The checker generates errors for cases where
the replacement tag creates a more likely tag sequence.
This is not a fool-proof method, since the best possible replacement tag cannot be

predicted beforehand in a stop tag list. An attempt is made to find the pairs of tags
that are most often mixed up in an error corpus. A stop tag may also have more
than one replacement tag. In such situations, the most likely replacement tag is
selected to compare with the liklelihood of the original tag. Finally, a corpus larger
than the one million word Brown corpus is needed to accurately model trigram tag
sequences.

4.4.2.4. Quadgrams

An extremely large corpus would be needed to model all possible quadram tag se-
quences for the same reasons as the trigram tag sequences mentioned earlier. The
number of possible quadgram sequences is very large and accurately modeling the
usage patterns of such a huge number of sequences would require a corpus that is
not currently available. The space and time required to build a quadgram model
would be correspondingly large.
The quadgram model is simplified to identify specific words that are used in the

wrong context. Quadgram sequences are constructed for a set of stop words. These
stop words represent pairs of words like is / are, was / were, and there / their.
Consider the sentence - “A herd of horses are better than a flock of sheep.”. The
grammar checker returns with the following description and suggestion:

Description: The fragment better than a is not usually preceded by are

Suggestion: Possible agreement error: Replace are with is

47

4. A Grammar Checker

The checker begins by constructing two quadgrams when a stop word is observed
in the sentence. For example, in the sentence above, the two quadgrams - “herd of
horses are” and “are better than a” are generated when the word are is seen. All the
words in the quadgrams are replaced by their corresponding tags with the exception
of the stop word (are). The use of tags instead of the specific words themselves,
makes the quadgrams more general and easier to model with a smaller corpus. The
likelihood of both quadgrams with the given stop word are, is evaluated using the
Quadgram database table.
The stop word are is replaced with is in both quadgrams and the likelihood of

the modified quadgrams is extracted from the database table as before. If the like-
lihood of the modified quadgram substantially exceeds the likelihood of the original
quadgram, then the checker generates an error.
The quadgram model is subject to the same types of problems as the trigram

model. We need to know beforehand words that are frequently used incorrectly and
the appropriate replacement word. The type of words included in the quadgram
stop word list are seen in subject-verb agreement errors. The stop word list used
in the Emustru grammar checker is made up of a few of these types of words. The
size of the Brown corpus may not be sufficient to build an accurate model for these
quadgrams.
Long distance word dependencies in sentences are not detected by the bigram

or trigram table look ups. Such dependencies occur when the subject and verb are
separated by one or more words. making it difficult for the bigram or trigram checker
to detect the low likelihood of a plural form of a verb used with a singular form of
a noun. The quadgram table models some of these long distance word dependencies
that are missed in the earlier steps.

4.4.2.5. Error Model

The spelling error model has been adapted to describe a grammar error model. In the
spelling error model, four modification functions that operate at the character level
are used to correct the spelling of a word. For example, the transpose function will
interchange the letters i and e in the mis-spelled word recieve to create the correct
word receive. One of more of these four functions can be used to correct any mis-
spelled word. The edit distance is a measure of the number of times a modification
function needs to be applied to transform a mis-spelled word into the correct word.

48

4.4. Design of Emustru Grammar Checker

The grammar error model uses the same functions as the spelling error model, except
that the modifications for the grammar error model operate at the word level (see
Table 4.2).

Table 4.2.: Types of Grammar Errors
Error Sentence
Delete Why did the chicken cross road?
Insert Who is the the chicken?
Transpose The chicken’s food is from made soya.
Modify The number of chickens were large.

For example, the delete error in the first row of Table 4.2 is corrected by applying
the insert function that adds the word the between the words cross and road. Sim-
ilarly, the transpose function transforms the word sequence “from made” to “made
from” in the third row of Table 4.2. The rules in the ngram tables that detect these
errors is shown in Table 4.3.

Table 4.3.: Database Tables used to Correct Errors in Table 4.2
Error DB Table Message
Delete Bigram (tag_tag) A noun is not usually followed by a noun (refer

to cross and road).
Insert Bigram (word_tag) The token the is not usually followed by an

article (refer to the and the).
Transpose Bigram (word_tag) The token is is not usually followed by a

preposition (refer to is and from).
Modify Quadgram (tag_word) The fragment number of chickens is not usually

followed by were (Possible agreement error:
Replace were with was)

This is a simplistic error model and does not make distinctions between errors such
as subject-verb agreements, run-ons, and other grammatical mistakes. Although the
error model is unsophisticated, the descriptions and suggestions are usually good
enough for the user to correct an error. The part of the sentence that contributed

49

4. A Grammar Checker

to the error is highlighted and the automatically generated description explains why
the tag(s) or token were not appropriate in the sentence.

4.4.3. Applying a Rule Set
The input to the grammar checker is a list of tokens and tags along with the stop
lists for each of ngram checks. The four ngram database tables are checked in order
starting from the Unigram to the Quadgram table (see Figure 4.3). The output from
the grammar checker is a list of possible errors.

Figure 4.3.: Applying a Ngram-based Rule Set to Detect Errors

T
a
g
s

a
n
d

T
o
k
e
n
s

Check for Unigram
token errors

Check for Bigram
tag sequence errors

Check for Trigram
tag sequence errors

Check for Quadgram
tag/token sequence errors

List of all Errors

INPUT

OUTPUT

Unigram
Table

Bigram
Table

Trigram
Table

Quadgram
Table

DATABASE

S
t
o
p

L
i
s
t

F
i
l
e
s

CHECKER

Each of the errors returned contains a description and a suggestion. The text for
these fields is automatically generated and therefore not as precise as a message from
a manually generated rule. An unigram error states that a word is rarely used with
the assigned POS. A bigram error mentions that either a word is not usually followed
by a tag or two assigned tags are rarely seen together. The trigram and quadgram

50

4.5. Evaluation

errors suggest some type of agreement error and propose alternate tags or alternate
words to correct a sentence.

4.5. Evaluation
The Emustru grammar checker has been evaluated using a small corpus of 100 an-
notated sentences. A fraction (70%) of the sentences are grammatically correct and
the remainder have one or more errors. This is a small corpus and a large scale
evaluation would use a wider variety of sentences and errors to test the checker. The
corpus to test the grammar checker is a collection of e sentences, out of which a sen-
tences (a < e) are grammatically incorrect. The grammar checker was run against
the set of e sentences to detect errors. The results of the test are shown in Table 4.4.

Table 4.4.: Grammar Checker Evaluation
Actual Errors
Yes No

Flagged Errors Yes a b
No c d

where e = a + b + c + d. The value of a is the number of errors that were actually
errors and correctly flagged by the checker. The value of b is the number of errors
that were not found by the checker. The value of c is the number of errors that were
wrongly identified by the checker. Finally, d is the number of correct sentences that
was assigned zero errors by the checker.
Most of the sentences in the test corpus have been selected from various news

articles on the Web. News articles from reputed sources have been proofread and can
be presumed to be error-free. A sample of sentences from news articles on different
topics were selected for the set of correct sentences. The set of incorrect sentences
were generated from the most common types of grammatical errors mentioned on
the Web.
Notice, this error corpus is not annotated to mention a particular type of grammat-

ical error. Instead, a sentence is merely defined as correct or incorrect. Therefore,
there is no verification of error type detected to match a particular grammatical

51

4. A Grammar Checker

error. Any error detected in a sentence that is invalid is considered as a correctly
flagged error and tabulated in the value of a in Table 4.4. Currently, there is no
standard corpus for grammatical error detection and no standard format to define a
syntax error.
Recall and precision are two standard evaluation parameters used in Information

Retrieval to evaluate the performance of search engines. In this context, we can
define recall as the value a / (a + c) and precision as a / (a + b). Typically, recall
and precision are inversely related. i.e. high recall is associated with low precision
and vice versa. Consider an extreme case where a = e and every sentence in the test
corpus is flagged as an error. Recall will be 1.0 or the maximum since the value of
c, the number of missed errors will be zero. However, precision will be low since the
value of b, the number of wrongly detected errors will be high.
Conversely, the checker may flag a very small fraction of errors that are obvious.

In this case, the value of a will be very small and correspondingly the value of b will
be zero leading to precision of 1.0. However the value of c, the number of actual
errors that were not flagged by the checker will be high making recall low.
This problem of balancing recall and precision is fairly common in other NLP tasks

such as entity extraction and sentiment analysis. The implementation in this paper
attempts to maximize precision with reasonable recall. In other words, flagging
an excessive number of errors is more annoying to the user than allowing a few
undetected errors. We can vary the threshold higher or lower to detect fewer or
more errors respectively. The threshold should be high enough to minimize the
number of false positives, i.e. the sentences the checkers believes are errors, but are
actually correct. In Table 4.4, this means that the checker should minimize the value
of b. Recall is controlled to a lesser extent by minimizing the value of c, i.e. finding
as many of the actual errors as possible. A third evaluation parameter is accuracy.
This parameter combines all the results in Table 4.4 into a single value. It is defined
as (a + d) / (a + b + c + d). Accuracy measures the number of error sentences
and correct sentences detected relative to the total number of sentences.
Table 4.5 contains four sample sentences from the test corpus of 100 sentences,

two sentences each from the correct and error categories. These sentences are similar
in style to the other sentences in the corpus. There is a large number of grammatical
error types and the test corpus covers some of the common errors. The types of

52

4.5. Evaluation

errors covered include subject-verb agreement and the incorrect location of words in
a sentence.

Table 4.5.: Sample Error and Correct Sentences
Category Sentence
Error I did good in this course.
Error Their is a major problem with this paper.
Correct It’ll recover this year after the temporary adjustment.
Correct Some people survive much longer based on the tumor’s

subtype, size, whether it has spread and the patient’s
age.

A test of the Emustru grammar checker with a likelihood threshold of 6.5 gave an
accuracy measure of 0.81 with the values of 15, 4, 15, and 66 for the parameters a, b,
c, and d respectively of Table 4.4. The recall and precision measures were evaluated
using the same error corpus.
Figure 4.4 shows a fairly typical recall-precision plot that is observed in other

information retrieval applications. When recall is high, precision is low and vice
versa. The recall and precision of the MS Word grammar checker for the same error
corpus was 0.433 and 0.684 respectively. The precision of the MS Word grammar
checker is set high enough to ensure that very few false positives will be reported.
The accuracy of the Emustru grammar checker was varied by altering the likelihood

parameter (see Figure 4.5). The likelihood was roughly proportional to the accuracy
till a threshold of about 6.0 and thereafter the accuracy was relatively constant.
We would expect low accuracy when the likelihood is low since a large number of
false positives will be reported. The recall for low likelihoods is close to 1.0, while
precision is much lower at 0.3. At higher likelihoods, the recall falls to about 0.5 and
the precision rises up to about 0.79. The interface to the grammar checker on the
client allows the user to control the likelihood parameter by adjusting the grammar
level from very strict to liberal. The highest accuracy with the Emustru grammar
checker of 0.81 was a slight improvement over the accuracy of 0.77 with MS Word.
There are several reasons why the accuracy of the grammar checker cannot be

tweaked by adjusting the likelihood alone. The first possible source of errors is a
wrong sentence boundary detection. Tokens from a sentence that is broken or a com-

53

4. A Grammar Checker

Figure 4.4.: Recall-Precision Plot for the Corpus of 100 sentences.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ec

al
l

Precision

MS Word

bined sentence will be harder to tag accurately. However, most sentence boundary
detectors are very accurate, if the text passed is filtered to remove text fragments
such as titles and table text. A second reason for low accuracy is the assignment
of the wrong POS tag. This happens in roughly 5% of all tokens and therefore the
grammar checker cannot possibly make an accurate judgement of a grammatical er-
ror. Finally, the tagged corpus used to build the ngram Rule sets may not accurately
represent language usage patterns.

4.6. Performance
A majority of the time to detect errors is spent running SQL statements to search
the four database tables. Roughly 1000 SQL select requests were required to check
the error corpus of 100 sentences (2020 words). Roughly 50% and 25% of the SQL
statements were lookups of the bigram and unigram tables respectively. The remain-
ing 25% of the SQL statements were primarily lookups of the trigram table. The
time to run a SQL select statement on an Intel P4 Dual-core machine with 1 Gbyte

54

4.6. Performance

Figure 4.5.: Accuracy-Threshold Plot for the Corpus of 100 sentences.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 2 4 6 8 10 12

A
cc

ur
ac

y

Threshold

MS Word

of RAM is a few milliseconds or less. Therefore, the time to analyze a sentence is
roughly 30 milliseconds or less. The time to initially load the grammar checker is
significant. A Hidden Markov Model-based POS tagger that is used to assign tags to
tokens is read from a file. The time to read the 6 Mbyte POS tagger file at startup
time is roughly 1.25 seconds. The size of the database is shown in Table 4.6.

Table 4.6.: Number of Rows in Ngram Rule Set Tables
Table No. of Rows
en_unigrams 18,379
en_bigrams 10,463
en_trigrams 19,133
en_quadgrams 17,080
Total 65,055

55

4. A Grammar Checker

56

5. Essay Evaluator
This chapter describes the use of automated methods to evaluate essays. Automated
Essay Scoring (AES) [9] began in the 1960s and has since become an accepted method
of grading essays and often accompanies the ratings generated by a human grader.
Competitive exams such as the SAT and GMAT use a human and an automated
grader to evaluate an essay. Some of the benefits of an AES include lower costs, less
time to evaluate an essay, and the absence of any bias.
Prior to automated essay evaluation, all essays were manually scored, adding to

the high cost of evaluation. Consider the SAT exam that a million or more students
may take in any given year. Each of the million essays of roughly 100-300 words
must be read and evaluated. A human grader needs to spend about 3-4 minutes to
assign a score to each essay. In large scale exams, the use of an automated system
can significantly reduce this cost and the time to complete the evaluation. Finally, a
human grader is susceptible to fatigue or may be biased if a topic is open-ended and
possibly controversial. An automated system runs the same algorithm to compute a
score for all essays and is free of any bias.
The time to correct an essay is also a burden for a class teacher. Imagine a class of

30 students or more, who submit 2-3 writing assignments per week. A teacher will
need to correct about one hundred essays per week; a time consuming and dull task.
The use of AES can reduce this burden to some extent through an initial machine
evaluation to identify some of the obvious errors in an essay. Another task that is
difficult for a teacher is to identify the common errors in a collection of 30 or more
essays. An AES can easily collect, maintain, and summarize global information for
a collection of essays.
A common criticism of AES is that a machine never really understands the contents

of an essay and instead assigns scores based on a set of features. It is true that an
evaluation algorithm does not actually comprehend the essay. Yet, it has been shown
that a small number of carefully selected features are sufficient for an algorithm to

57

5. Essay Evaluator

compute a score that is very close to the score that a human would have assigned to
the same essay.
Consider the E-rater ™ [10, 11] from ETS Technologies that has been used to

evaluate roughly 360,000 essays per year. Every essay is scored in the range of 1 to
6, where 1 is the lowest and 6 the highest score. In 97% of the essays, the absolute
score difference between a human grader and the E-rater was less than 2. An absolute
score difference of more than 1 was resolved by a second human grader.
Even though human graders and AES strongly correlate, it is possible to generate

a poor essay that would score high with AES. A human grader assigns a grade to
an essay based on concepts such as organization, discourse, and structure. An AES
implicitly computes values for features that represent these concepts and it is possible
to generate an artificial essay that scores well with an AES but is actually a poor
essay. However, the effort to create such an essay is not minimal and would require
a trained writer to generate text such that most of the features used in an AES are
fully represented in the essay. This also implies that a human grader is still necessary
to confirm the scores returned by an AES.
It is unlikely that AES will identify the next great writer given the limitations of

the technology. But, automatic evaluation of an essay can simplify a teacher’s job in
a classroom. A student can submit an essay to a machine, make corrections based
on the feedback from the AES, and then submit a second and possibly improved
version of an essay to the teacher.
A teacher would like to see automated feedback to a student that is very similar to

what a human would have generated. The type of feedback would include spelling
mistakes, grammatical errors, and the use of discourse terms. The current AES
tools cannot generate feedback of the same quality that a teacher can provide a
student. However, AES uses approximations to measure features that are considered
important to a teacher.

5.1. How does it Work?
First, consider how a human grader evaluates an essay. The grader reads the entire
essay, forms an opinion on the quality of the essay, and assigns a score. This score
is also called a holistic score based on the grader’s overall impression of the essay.
A holistic score is a single value in a range (1-6) computed from the grader’s evalu-

58

5.1. How does it Work?

ation of a set of characteristics. While reading the essay, a grader looks for certain
traits that characterize a good essay. The presence of such traits or features in an
essay motivate the grader to assign a higher score to such essays compared to other
essays in which the same traits are absent. These traits typically include content,
creativity, mechanics, style, and organization. An AES scans an essay and evaluates
and searches for the presence of such traits.
The difficulties in building an AES lie in identifying features that accurately rep-

resent these traits. Page and Petersen[10] use the terms trins and proxes to describe
traits and features respectively. Trins represent characteristics that a human grader
evaluates in an essay such as style, organization, and content. On the SAT, the types
of characteristics that should be present in a high scoring essay include a well-stated
and developed point of view, critical thinking, examples, supporting evidence, co-
herent arguments, strong vocabulary, and grammatically correct sentence. A proxe
or approximation is a variable that is automatically extracted and roughly estimates
a trin or characteristic. Some of the roughly 30 proxes used in Project Essay Grade
(PEG [9]) include - the average sentence length, the number of paragraphs, total
number of words, and average word length. A proxe may represent part of one or
more trins and a trin may use multiple proxies. In other words, there is a many-to-
many relationship between trins and proxes.

5.1.1. Traits and Features
Clearly, an AES is more likely to be accurate when a proxe closely represents a trait.
How do we find proxes or variables that define traits? The best way is to ask human
graders what they look for in an essay to evaluate a particular trait. For example,
the total number of words, the number of unique words, and the presence of domain
specific words are proxes to measure the content of an essay. A human grader may
not actually count the number of occurrences of words, but will make judgements
from an estimate of the length of the essay, the presence of some words, and the use of
vocabulary. An AES can make very precise counts of words, frequencies, sentences,
word types, and other parameters. Table 5.1 contains a list of traits and associated
features that are measured in an essay.
The types of grammatical errors identified for the grammar trait can include miss-

ing punctuation, run-on sentences, subject-verb agreement, ill-formed verbs, pronoun

59

5. Essay Evaluator

Table 5.1.: Traits and Associated Features
Trait Features
Grammar Measures of grammatical errors
Usage Misuse of articles, wrong word forms, preposition errors,

and faulty comparisons
Mechanics Spelling mistakes and missing punctuation marks.
Style Use of passive voice, inappropriate sentence lengths,

and faulty conjunction usage.
Organization Presence of an introduction, content paragraphs, and a

conclusion
Development The average length of a discourse element
Lexical Complexity Average word length and number of medium-long words
Vocabulary Usage Presence of prompt-specific terms

errors, and forms of garbled sentences. The measures of the usage trait are also
mostly grammatical and include the misuse of articles, wrong word forms, confused
words, preposition errors, and faulty comparisons. The sentence - “We don’t have
many information on the subject”, does not use the proper article. The wrong word
form of danger is used in the sentence - “Until recently, the Hudson river contained
danger levels of pollutants”. The word effect is used in the sentence - “Lack of sleep
effects the quality of work.”, instead of the word affect. The sentence - “They arrived
to the town” contains a preposition error. A faulty comparison compares two nouns
that not alike. For example, the sentence - “The weather in Germany is colder than
Gabon”, makes an illogical comparison between weather and a country.
The mechanics of an essay includes spelling mistakes, the wrong case of a letter

in a word, missing punctuation marks, and incorrect fused or compound words.
The measures to evaluate the style of an essay look for the use of passive voice,
repetition of words, and sentences that are either too long or too short. An essay for
a typical prompt in an exam is expected to have an introduction and a conclusion.
Between these two discourse elements, an essay should also contain main points,
supporting material, and a thesis. The absence of these discourse elements in an
essay will potentially lead to a lower score. A discourse element such as a main
point without any supporting material is weak and possibly not fully developed. A

60

5.1. How does it Work?

completely developed main point will have at least one or more sentences to support
the argument.
The measures for lexical complexity evaluate the usage of words. A large num-

ber of words that are more than five or six characters long may indicate a strong
vocabulary. Finally, in a group of essays generated for a specific prompt, we would
expect to see a similar set of words in essays with high scores. These words are
prompt specific and represent the common terminology used to discuss the essay
prompt.
Traits such as content and organization can be reasonably approximated using a

set of variables. But, other traits such as creativity are hard to define in the form of
an algorithm that can be coded in an AES. It is difficult because there is no model
that an AES can precisely measure to evaluate the degree of creativity in an essay.
Such traits that are based on features that cannot be estimated apriori are difficult
to approximate and are potential sources of errors in an AES.
Despite these deficiencies in an AES, scores computed automatically have a strong

correlation with the scores of a human grader. This is possibly because the traits
that an AES can evaluate with some accuracy are sufficient to generate a precise
score. The precision of an AES is not proportional to the number of features. In
other words, a few good features are sufficient to accurately categorize an essay[11].
Further, an essay with a strong trait like creativity is usually accompanied with high
values of other evaluated traits such as organization and vocabulary.

5.1.2. Creating a Model
An unseen essay is assigned a score using a model that was built with a set of pre-
scored essays. Consider a set of training essays for each of the six categories. A group
of features is extracted for each training essay and the collection of such features for
a particular essay category define the model (see Figure 5.1).
Every training essay has a vector of values that represent the extracted features.

For example, one of the values in the vector represents the number of unique words
in the essay. Each vector has an associated category and each position in the vector
represents an identical feature. The model is a logistic regression classifier created
from the set of training vectors and associated categories.

61

5. Essay Evaluator

Figure 5.1.: Building an Essay Model with Training Essays
 Training Essays for
 Categories

1 2 3 4 5 6

Extract word, sentence, and
 global features

Generate and save a model

Essay Model

Vectors

Raw Text

5.1.3. Using a Model
An unseen essay is first processed to create a vector of values in the same manner
a vector was created for the set of training essays. The vector is a list of feature
values, but excludes any category. The classifier accepts a vector and returns the
closest category based on the trained model (see Figure 5.2).

Figure 5.2.: Assigning a Category to an Essay

Extract word, sentence, and
 global features

Read model and assign
the closest category Essay Model

Test Essay

A category from 1-6

Raw Text

Vector

62

5.2. Emustru Essay Evaluator

5.2. Emustru Essay Evaluator
The Emustru essay evaluator is based on the design explained in Section 5.1. A set
of 52 training essays for the International English Language Testing System (IELTS)
were collected from the Web. In an ideal case, the number of training essays per
category should be large enough to build a precise model. Unfortunately, the number
of training essays per category varied from a maximum of 20 essays to a minimum
of 5 essays. The category 1 was assigned in the extreme case when insufficient text
was provided.
A logistic classifier assigns a weight to each of the features in the vector generated

from an essay, such that the weighted vector fits a model generated from the set of
training essays. In other words, a feature x that has high values for a particular
category y alone, will have a higher weight in the model for y. So, if an unseen essay
contains a high value for feature x, it is more likely to be assigned category y. The
list of features for a given essay in Emustru are -

• Total number of words

• Total number of characters

• Number of unique words

• Fourth root of the number of words

• Number of spelling errors

• Number of grammatical errors

• Number of paragraphs

• Number of sentences

• Average word length

• Number of unique words per 100 words

• Average sentence length in words

• Number of words with more than 5 letters

63

5. Essay Evaluator

• Number of words with more than 6 letters

• Number of words with more than 7 letters

• Number of words with more than 8 letters

• Number of passive voice sentences

• Standard deviation of word lengths

• Standard deviation of sentence lengths

• Number of discourse markers

• Average coherence between sentences and the entire text

• Average coherence between paragraphs and the constituent sentences

• Average coherence between consecutive sentences

The collection of 22 features was extracted in a vector and passed to the classifier
model. The values of the features are a mixture of integers and floating point num-
bers. The logistic classifier returns the closest category for the passed vector. The
text for an essay that is to be evaluated is pasted into a textbox in a Web based
form and passed to the essay evaluator. The evaluator returns a tabbed screen of
results shown in Figure 5.3.
The first tab is a summary screen showing some of the scores of the essay compared

to a high scoring essay called Brown. A few features including the score, grammatical
errors, spelling errors, and vocabulary are shown in the summary. All values have
been scaled to a 0-100 range.
The next tab contains a list of grammatical errors shown per sentence. The first

sentence in Figure 5.4 contains a grammatical error. The statistical grammar checker
detected an adjective (proud) following a noun (country); such an occurrence is very
rare in English. The following sentence did not contain any error that could be
detected.
The spelling tab shows the list of sentences along with any spelling errors in each

of the sentences. For every spelling error, a potential suggestion is also found. The
vocabulary tab shows a few of the word statistics such as the number of words,

64

5.2. Emustru Essay Evaluator

Figure 5.3.: Evaluation of an Essay in Emustru

average word length, number of unique words, and the standard deviation of the word
length. The organization tab shows the coherence between individual sentences,
sentences and their parent paragraph, and sentences with the essay text as whole.
Other statistics include the counts of the use of passive voice and discourse markers.
Notice, a higher count of passive voice markers may lead to a lower score while a
higher count of discourse marker is usually associated with a high scoring essay. The
final tab contains a list of all the features in the essay compared to an ideal high
scoring essay (Figure 5.5).
The score assigned to the essay (5 in this case) is shown compared to an ideal

essay. The number of grammatical errors and the category are also shown in Figure
5.5. The remaining 19 features are not shown in the figure. Any value that is not
reasonable close to the ideal value is shown highlighted in the results. For example,

65

5. Essay Evaluator

Figure 5.4.: The First Two Sentences of an Essay in the Grammar Tab

Figure 5.5.: Three Attributes from the Full Evaluation of an Essay.

the number of grammatical errors has been highlighted in Figure 5.5 since it is double
the number of grammatical errors found in an ideal essay.

5.3. Applying AES
The use of AES has become popular in schools and universities. Some of the popular
commercial AES products include E-rater ™ [11], Intellimetric ™[12], and Intelligent
Essay Assessor™ [13]. These products have been successfully used with a large
number of essays on many different topics. However, AES is not perfect and there
are valid criticisms about automated ways to evaluate writing.

66

5.3. Applying AES

5.3.1. Is AES Valid?
In several evaluations, AES products have shown a high correlation with human
graders and the use of AES in competitive exams is accepted despite its weaknesses.
Even though critics may claim that an AES does not understand an essay in the
same way a human can appreciate an essay, there is no denial that the final outcome
(score) of an AES is valid in most cases.
A secondary issue is whether a student can write a bad faith essay to fool the

AES into assigning a high score. A human grader would quickly detect a bogus
essay and assign a low score. But, an AES can be deceived by an essay that scores
well in the features needed for a high score. For example, consider an essay that is
reasonably long, uses a large vocabulary, with no grammatical errors, and is largely
coherent. Such as essay would receive a high score, even though the facts mentioned
and examples were completely wrong. The AES has no background knowledge to
detect such errors.
The Intelligent Essay Assessor (IEA) claims to overcome this problem with a

collection of pre-scored essays on a particular topic. An unscored essay would receive
a high score, if it appears to be close to a group of essays that were assigned high
scores prior to the evaluation. The assumption is that high scoring essays for a
particular topic will look more similar to another unseen but well-written essay than
a poor and irrelevant essay.
IEA uses a matrix factorization algorithm to simultaneously consider all words in

an essay. This makes it difficult to write a bad faith essay, since there are no known
features that can be artificially manipulated to generate a high score. Instead, IEA
relies on the content words alone.

5.3.2. Essay Prompt
An essay prompt describes the main topic or issue that the student’s essay should
discuss. A few sample prompts are listed below.

• How do you feel about people using cell phones in public? Should cell phones
be banned in public places ? Why or why not?

• What is your favorite time of the year? Why? What do you like about that
period?

67

5. Essay Evaluator

• You have passed a driving test. Your friend who does not have a driver’s license
would like to know the procedure. Explain how you passed the driving test.

The first prompt is an argumentative prompt. There is no right or wrong answer
and an argument can be made both ways to support or disapprove a ban on cell
phones in public places. Essays based on these types of argumentative prompts are
a little harder to compose than other prompts. An argumentative essay must first
make a thesis statement and present a well-developed list of supporting arguments.
The second prompt is a descriptive prompt. An essay for a descriptive prompt

creates the background for an event or period and elaborates on the topic. A good
essay for such a prompt lists the facts justifying the opinion of the writer in a logical
order. The third prompt is an expository prompt. This type of essay explains a
procedure step-by-step from the start to finish in order.
All prompts are not equally difficult. Prompts on a complex topic may be harder

to write about than a simple topic. For example, a descriptive prompt is a more
appropriate assignment for a fourth grade class than an argumentative prompt. The
AES does not make distinctions between an easy or difficult prompt and treats essays
for all prompts in the same manner.
An AES such as the IEA that relies on content words, uses separate models for

each prompt. In other AES products, it would not be appropriate to use a model
trained with essays from students of the fourth grade to evaluate essays from students
of the twelfth grade. Similarly, it would not be appropriate to grade the Gettysburg
address using a model generated from student essays.
The E-rater 2.0 [11] uses a model that is not based on any particular prompt to

grade essays. This is very convenient, since it is not necessary to create separate
models based on each topic. A single model can capture the necessary information
to score any essay. One argument against the use of a single model for all prompts
is that content specific words are not given any additional importance in the model.
The use of content specific words in an essay is an indicator that the student has
understood the prompt and the essay is relevant. Even though this feature is absent
in E-rater 2.0, the results are comparable to other AES.

68

5.3. Applying AES

5.3.3. Essay Length
Products like Intellimetric use several hundred features in contrast to the much fewer
number of features in E-rater. The number of features appears to play less of a role in
the quality of grading results of an AES. On the other hand, one particular feature,
the essay length is the most dominant feature. The score of an essay was very closely
related to the essay length (number of words). It would seems as if a student could
easily fake the AES into assigning a high score simply by generating a long bogus
essay with a large number of words. The simplest method to generate a long essay
is to repeat a sentence endlessly till the essay is sufficiently long.
However, such an essay would have very low values for other features such as the

number of different words and the sentence length standard deviation. Further, a
student would not risk submitting such an essay if there was a possibility that a
human grader may score the essay. Yet, as long as there is a possibility that a bad
faith essay may be scored incorrectly by an AES, it is unlikely that human graders
can be completely replaced.
The benefits of a long essay for a competitive exam diminish beyond three main

points. Increasing the number of examples from one to three will improve an essay
more significantly than from three to five examples. The development or elaboration
of an example is also a feature used to compute the essay score. A fully developed
example with an introduction, thesis, and strong supporting material will contribute
to the final score.

69

5. Essay Evaluator

70

A. Sources
The sample code used in this manual can be downloaded from http://emustru.sf.
net. You can use Ant (http://ant.apache.org) or the Eclipse platform (http:
//www.eclipse.org) to compile the Java code. Several open source products have
been used in Emustru. Open source software is constantly under development and
therefore there will be features in newer versions of some tools that will replace the
ones mentioned in this manual. However, an effort has been made to use functions
that are not likely to become obsolete in the near future.

Table A.1.: Sources and Licenses
Name License
WordNet http://wordnet.princeton.edu/license
LingPipe http://alias-i.com/lingpipe/web/download.html
Lucene http://www.apache.org/licenses/
Apache http://www.apache.org/licenses/
MySql http://www.mysql.com/about/legal/
Project Gutenberg http://www.gutenberg.org/wiki/Gutenberg:

The_Project_Gutenberg_License
Brown Corpus http://www.hit.uib.no/icame/brown/bcm.html
FreeTTS http://freetts.sourceforge.net/license.terms
Google Web Toolkit http://code.google.com/webtoolkit/terms.html
Emustru http://www.gnu.org/licenses/gpl-2.0.html

71

http://emustru.sf.net
http://emustru.sf.net
http://ant.apache.org
http://www.eclipse.org
http://www.eclipse.org
http://wordnet.princeton.edu/license
http://alias-i.com/lingpipe/web/download.html
http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://www.mysql.com/about/legal/
http://www.gutenberg.org/wiki/Gutenberg:The_Project_Gutenberg_License
http://www.gutenberg.org/wiki/Gutenberg:The_Project_Gutenberg_License
http://www.hit.uib.no/icame/brown/bcm.html
http://freetts.sourceforge.net/license.terms
http://code.google.com/webtoolkit/terms.html
http://www.gnu.org/licenses/gpl-2.0.html

A. Sources

Source Code
The directory structure of the Emustru code is shown below in Table A.2. The root
directory contains the PhP code and the java directory contains the java source code
and associated configuration files.

Table A.2: Directory Structure of Sample Code
Name Description
/ Configuration, readme, install, and startup PhP

scripts.
complete/ PhP scripts for the complete word game
docs / Documentation
essay / PhP scripts to evaluate essays
follow/ PhP scripts to guess the following word
grammar / PhP scripts for sentence completion and error ID

identification
icons/ Images
java / Root directory for Java code
java/classes/ Jar and class files for java code
java/data/ Configuration files for java code
java /lib/ Third party jar files
java/src/ Source Java files
lib/ Common PhP scripts
relationship/ PhP scripts for the relationship game
scramble / PhP scripts for the scramble game
sentence/ PhP scripts for the sentence completion quiz
signon/ PhP script to signon
spelling PhP scripts for the spelling quiz
vocabulary PhP scripts for the vocabulary quiz
wordnet PhP scripts to handle WordNet functions

72

Bibliography
[1] http://en.wikipedia.org/wiki/Computer-assisted_language_learning,

Computer Assisted Language Learning (CALL).

[2] http://www.camsoftpartners.co.uk/freestuff.htm Free resources and ar-
ticles on Computer Assisted Language Learning.

[3] http://wordnet.princeton.edu The WordNet lexical database for English.

[4] http://ftp.ets.org/pub/res/erater_iaai03_burstein.pdf Criterion: On-
line essay evaluation: An application for automated evaluation of student essays.

[5] http://en.wikipedia.org/wiki/Brown_Corpus The Brown Corpus.

[6] http://www.gutenberg.org/wiki/Main_Page The Project Gutenberg..

[7] http://www.quizlet.com Quizlet: Flashcards, vocabulary memorization, and
word games.

[8] http://www.alias-i.com The LingPipe Computational Linguistics software.

[9] Page, E. B. and Petersen, N.S.: The computer move into essay grading. Up-
grading the ancient test. Phi Delta Kappa, 76(7), 561-565.

[10] Burstein J., The E-rater Scoring Engine: Automated essay scoring with nat-
ural language processing, in Automated Essay Scoring: A Cross Disciplinary
Perspective, Lawrence Erlbaum Associates, 2003, pp 113-121.

[11] Attali Y. and Burstein J.: Automated Essay Scoring With e-rater® V.2, The
Journal of Techonology Learning and Assessment, Vol. 4, No. 3, February 2006.

73

http://en.wikipedia.org/wiki/Computer-assisted_language_learning
http://www.camsoftpartners.co.uk/freestuff.htm
http://wordnet.princeton.edu
http://ftp.ets.org/pub/res/erater_iaai03_burstein.pdf
http://en.wikipedia.org/wiki/Brown_Corpus
http://www.gutenberg.org/wiki/Main_Page
http://www.quizlet.com
http://www.alias-i.com

Bibliography

[12] http://www.vantagelearning.com/school/products/intellimetric/, In-
tellimetric, Vantage Learning.

[13] http://www.knowledge-technologies.com/prodIEA.shtml, Intelligent Essay
Assessor, Prentice Hall.

74

http://www.vantagelearning.com/school/products/intellimetric/
http://www.knowledge-technologies.com/prodIEA.shtml

