
Detecting Grammatical Errors in Text using a
Ngram-based Ruleset

Manu Konchady,
Mustru Search Services,

118, RMV Extension, Stage 2, Block 1,
Bangalore, 560094. India.
mkonchady@yahoo.com

Abstract— Applications like word processors and other writing
tools typically include a grammar checker. The purpose of a
grammar checker is to identify sentences that are grammatically
incorrect based on the syntax of the language. The proposed
grammar checker is a rule-based system to identify sentences
that are most likely to contain errors. The set of rules are
automatically generated from a part of speech tagged corpus.
The results from the grammar checker is a list of error sentences,
error descriptions, and suggested corrections. A grammar
checker for other languages can be similarly constructed, given a
tagged corpus and a set of stop words.

I. INTRODUCTION

A grammar checker verifies free-form unstructured text for
grammatical correctness. In most cases, a grammar checker is
part of an application, such as a word processor. In this paper,
a Web-based grammar checker is implemented to verify the
correctness of short essays that are submitted by students in
competitive exams. An essay can vary from a single paragraph
to a medium sized document made up of several pages (~ 100
Kbytes).

The earliest grammar checkers in the 80s searched for
punctuation errors and a list of common error phrases. The
task of performing a full blown parse of a chunk of text was
either too complex or time consuming for the processors of
the early PCs. Till the early 90s, grammar checkers were sold
as separate packages that were installed with a word
processor. The software gradually evolved from a set of
simplistic tools to fairly complex products to detect
grammatical mistakes beyond a standard list of common style
and punctuation errors.

 While a grammar checker verifies the syntax of language, a
style checker compares the use of language with patterns that
are not common or deprecated. A style checker may look for
excessively long sentences, out-dated phrases, or the use of
double negatives. We have not considered style checking in
this work and have focused on syntax verification alone.
Further, there is no verification of semantics. For example, the
sentence - “Colorless green ideas sleep furiously.” was coined
by Noam Chomsky to illustrate that sentences with no
grammatical errors can be nonsensical. Identifying such
sentences requires a large knowledge corpus to verify the
semantics of a sentence.

Requirements
The main purpose of a grammar checker is to help create a

better document that is free of syntax errors. A document can
be analyzed in its entirety or one sentence at a time. In a batch
mode, the entire text of a document is scanned for errors and
the results of a scan is a list of all possible errors in the text.
An online grammar checker will identify errors as sentences
are detected in the text. Grammar checkers can be
computationally intensive and often run in the background or
must be explicitly invoked.

One of the primary requirements for a grammar checker is

speed. A practical grammar checker must be fast enough for
interactive use in an application like a word processor. The
time to analyze a sentence should be sub-second or less
following an initial startup time.

 The second requirement is accuracy. A grammar checker
should find all possible errors and correct sentences as well.
There are two types of errors. The first type of error is a false
positive or an error that is detected by the grammar checker
but which is not an actual error. The second type of error is an
actual error that was not detected by the grammar checker (a
false negative). In general, the number of false positives are
minimized to avoid annoying the user of the application.

 The third requirement to limit the number of correct
sentences that are flagged as errors by the grammar checker, is
related to the second requirement. At first, we may assume
that simply setting the threshold high enough for an error
should be sufficient to satisfy this requirement. However, a
grammar checker with a threshold that is too high will miss a
large number of legitimate errors. Therefore, the threshold
should be such that the number of false positives are
minimized while simultaneously reducing the number of false
negatives as well. The accuracy parameter defined in the
Evaluation section combines these two attributes in a single
value, making it possible to compare grammar checkers.

 Since it is difficult to set an universal threshold that is
appropriate for all situations, the user can select a level of
“strictness” for the grammar corrector. A higher level of
strictness corresponds to more rigorous error checking.

Emustru
The grammar checker in this paper is embedded in the open

source Emustru project [2]. The purpose of this project is to
teach language skills, specifically spelling and writing skills.
The project is aimed at high school or entry level college
students who want to improve their writing skills. Spelling
lists from textbooks prescribed for high school students
studying the central board (CBSE) syllabus and from the
Brown Corpus [1] are incorporated in Emustru.

An online Web-based essay evaluator in Emustru accepts a
chunk of text written in response to an essay type question,
that elicits the opinion of the writer regarding an issue or
topic. The essay evaluator uses the number of grammatical
errors in addition to other parameters such as the use of
discourse words, organization, and the number of spelling
errors in the text to assign an overall evaluation score.

The essay evaluator returns a score and a category for the
essay along with a list of parameters computed from the text
of the essay. The grammar checker returns results for each
sentence extracted from the text. A sentence that is incorrect is
flagged and a description explaining the error along with a
suggestion is given.

Sentence: My farther is fixing the computer.
Description: The tag an adverb, comparative is
not usually followed by is
Suggestion: Refer to farther and is

The words in the sentence that are incorrect are highlighted.
The description and suggestion are generated automatically
based on the type and location of the error. The checker marks
words in the sentence that is part of an error and subsequent
errors due to the same words are ignored. Therefore, some
sentences may need to be corrected more than once.

In Section III, the design of the Emustru grammar checker
is explained. A ruleset is automatically generated from a
tagged corpus and used to detect potential errors. This method
is purely statistical and will be inaccurate when the tagged
corpus does not cover all possible syntax patterns or if the
tagged corpus contains mis-tagged tokens. Further, since the
grammar checker uses a trained POS tagger, the accuracy of
the checker is constrained by the correctness of the POS tags
assigned to individual tokens of sentences.

Despite these inherent problems with a statistically-based
grammar checker, the results are comparable with the
grammar checker used in the popular Microsoft Word™ word
processor (see Section V). A sample corpus of 100 sentences
made up of 70 correct and 30 incorrect sentences was used in
the evaluation. The accuracy of the grammar checker can be
adjusted using a likelihood parameter. The grammar checker
has also been evaluated using the standard Information
Retrieval recall and precision parameters. Finally, some

improvements and the results are discussed in the conclusion
section.

II. PRIOR WORK

 Grammar checkers first divide a chunk of text into a set of
sentences before detecting any errors. A checker then works
on individual sentences from the list of sentences. Two tasks
that are necessary in all grammar checkers are sentence
detection and part of speech (POS) tagging. Therefore, this
dependency limits the accuracy of any grammar checker to the
combined accuracy of the sentence detector and POS tagger.
Sentence detectors have fairly high precision rates (above
95%) for text that is well-written such as newswire articles,
essays, or books. POS taggers also have high accuracy rates
(above 90%), but have a dependency on the genre of text used
to train the tagger.

 Two methods to detect grammatical errors in a sentence
have been popular. The first method is to generate a complete
parse tree of a sentence to identify errors. A sentence is parsed
into a tree like structure that identifies a part of speech for
every word. The detector will generate parse trees from
sentences that are syntactically correct. An error sentence will
either fail during a parse or be parsed into an error tree.

 One problem with this approach is that the parser must
know the entire grammar of the language and be able to
analyze all types of text written using the language. Another
problem is that some sentences cannot be parsed into a single
tree and there are natural ambiguities that cannot be resolved
by a parser. A grammar checker in the open source word
processor, AbiWord uses a parser from Carnegie Mellon
University to find grammatical errors.

 The second method is to use a rule-based checker that
detects sequences of text that do not appear to be normal.
Rule-based systems have been successfully used in other NLP
problems such as POS tagging [4]. Rule-based systems have
some advantages over other methods to detect errors. An
initial set of rules can be improved over time to cover a larger
number of errors. Rules can be tweaked to find specific errors.

A. Manual Rule-based Systems

 Rules that are manually added can be made very descriptive
with appropriate suggestions to correct errors. LanguageTool
[3] developed by Daniel Naber is a rule-based grammar
checker used in OpenOffice Writer and other tools. It uses a
set of XML tagged rules that are loaded in the checker and
evaluated against word and tag sequence in a sentence. A rule
to identify a typo is shown below.

<rule id="THERE_EXITS" name="Possible typo: 'There
exits' (There exists)">
 <pattern mark_from="1">

 <token>there</token>
 <token>exits</token>
 </pattern>
 <message>Possible typo. Did you mean <suggestion>
exists </suggestion>?
 </message>
 <example correction="exists" type="incorrect">
 There <marker>exits</marker> a distinct possibility.
 </example>
 <example type="correct">
 Then there exists a distinct possibility.</example>
 </rule>

 Every rule begins with id and name attributes. The id is a
short form name for the rule and the name attribute is a more
descriptive text that describes the use of the rule. The pattern
tags describe the sequence of tokens that the checker should
find in a sentence, before firing this particular rule. In this
example, the two consecutive tokens – there and exits define
the pattern.

 Once a rule is fired, a message and a correction is generated.
Since rules are manually generated in LanguageTool, the error
description and correction are very precise. The section of text
from the sentence that matches the pattern can be highlighted
to indicate the location of the error in the sentence.

 A rule with tokens in a pattern is quite specific, since the
identical tokens must occur in the matching sentence, in the
same order as the tokens in the pattern. More general rules
may use POS tags instead of specific tokens in the pattern. For
example, a rule may define a pattern where a noun tag follows
an adjective tag. This particular order of tags is rare in English
and is a potential error.

 LanguageTool uses many hundreds of such rules to find
grammatical errors in a sentence. Some of the patterns of
these rules include regular expression-like syntax to match a
broader variety of tag and token sequences. Although,
LanguageTool is a very precise grammar checker, there are
two drawbacks. One, the manual maintenance of several
hundreds of grammar rules is quite tedious. It has become a
little simpler to collaboratively manage large rule sets with the
use of Web-based tools. Two, the number of rules to cover a
majority of the grammatical errors is much larger. Therefore,
the recall of LanguageTool is relatively low. Finally, each
language requires a separate set of manually generated rules.

 Other rule-based checkers include EasyEnglish from IBM
Inc. and a Constitutent Likelihood Automatic Word-tagging
System (CLAWS) probabilistic tagger to identify errors. The
well known grammar checker used in Microsoft Word is
closed source and many of the other grammar checkers are
similarly not available to the public. The design of the
Emustru grammar checker is based on a probabilistic tagger
suggested by Atwell [5]. Rules are generated automatically
from a tagged corpus and errors are identified when low-

frequency tag sequences are observed in a sentence. The
assumption is that a frequent tag sequence in a tagged corpus
that has been validated is correct.

B. Automatic Rule-based Systems

 Grammar checkers based on automatically generated rule
sets have been shown to have reasonable accuracy [6,7] to be
used in applications such as Essay Evaluation. The automated
grammatical error detection system called ALEK is part of a
suite of tools being developed by ETS Technologies, Inc. to
provide students learning writing with diagnostic feedback. A
student writes an essay that is automatically evaluated and
returned with a list of errors and suggestions. Among the
types of errors detected are spelling and grammatical errors.

 The ALEK grammar checker is built from a large training
corpus of approximately 30 million words. Corpora such as
CLAWS and the Brown corpus, characterize language usage
that has been proofread and is presumed to be correct. The
text from these corpora is viewed as positive evidence that is
used to build a statistical language model. The correctness of a
sentence is verified by comparing the frequencies of chunks of
text from the test sentence with similar or equivalent chunks
in the generated language model.

 A collection of ill-formed sentences consitutes negative
evidence for a language model. Text chunks from a sentence
that closely match a language model built from negative
evidence are strong indicators of potential errors. However, it
is harder to build a corpus of all possible errors in a language.
The number and types of errors that can be generated are very
large. Consider a four word sentence.

My name is Ganesh.

 There are 4! or 24 ways of arranging the words of this
particular sentence, of which only one is legitimate. Other
sources of errors include missing words or added words that
make ill-formed sentences. The construction of a corpus made
up of negative evidence is time consuming and expensive.
Therefore like ALEK, the Emustru grammar checker uses
positive evidence alone to build a language model.

 Text is preprocessed (see Preprocessing section) before
evaluation. A grammar check consists of comparing observed
and expected frequencies of words / POS tag combinations.
This same method is used to identify phrases such as “New
Delhi” or “strong tea” in text. Bigram tokens such as these are
seen more frequently than by chance alone and therefore have
a higher likelihood of occurrence.

 Consider the phrase “New York” in the Brown corpus. The
probability of observing the word “York” when it is preceded
by the word “New” is 0.56, while the probability of observing
“York” when it is preceded by any word except “New” is

0.00001. These probabilities along with individual word
counts are used to find the likelihood that two words are
dependent.

 The log-likelihood measure [7] is suggested when the
observed data counts are sparse. An alternate mutual
information measure compares the expected relative
frequency of a bigram in the corpus to the expected relative
frequency assuming the bigram is independent.

MI=log p name−is
p name× pis

 where p(name-is) is the probability of the bigram “name is”
and the denominator is the product of the unigram
probabilities of “name” and “is”. Both the mutual information
and log-likelihood measures have been used in the Emustru
grammar checker. The log-likelihood measure is used when
the number of occurrences of one of the words is less than 100
(in the Brown corpus).

 A generated statistical language model is a large collection
of word/tag pairs The occurrence of words and tags in text is
not independently distributed, but instead has an inherent
association built in the usage patterns that are observed in text.
For example, we would expect to see the phrase “name is”
more often than the phrase “is name”. A rule would assign a
much higher likelihood for the phrase “name is” than the
phrase “is name”. The design for the ruleset used in the
Emustru grammar checker is based on a large number of these
types of observations.

III. DESIGN

 The design of the Emustru grammar checker is made up of
three steps. The first preprocessing step is common to most
grammar checkers. Raw text is filtered and converted to a list
of sentences. Text extracted from files often contains titles,
lists, and other text segments that do not form complete
sentences. The filter removes text segments that are not
recognizable as sentences. The text of each extracted sentence
is divided into two lists of POS tags and tokens. Every token
of a sentence has a corresponding POS tag. The lists of tags
and tokens for a sentence are passed to the checker.

 The second step is to generate a rule set that will be used by
the checker. In this step, four tables consisting of several
thousand rules are automatically generated from a tagged
corpus and lists of stop words and stop tags. The final step is
the application of the generated rules to detect errors. The lists
of tokens and tags are analyzed for deviations from expected
patterns seen in the corpus. Sequences of tags and tokens are
evaluated against rules from four different tables for potential
errors. The first error in a tag / token sequence that may have
multiple errors is returned from the grammar checker. This
limits the total number of errors per sentence.

A. Preprocessing

A pipeline design is used in the Emustru grammar checker.
The raw text is first filtered and converted into a stream of
sentences. The sentence extractor from LingPipe is used to
extract sentences from the text (see Figure 1). The sentence
extractor uses a heuristic method to locate sentence
boundaries. The minimum and maximum lengths of sentences
are set to 50 and 500 characters respectively. Most English
sentences end with a sentence terminator character, such as a
period, comma, or a exclamation. These characters are usually
followed by a space and the first word of the following
sentence or the end of the text.

Fig. 1 Extracting lists of tokens and POS Tags

 The sentence extractor will fail to extract sentences that do
not separate the sentence terminator from the first word of the
next sentence. Instead a complex token such as abc.com or an
abbreviation will be assumed. A POS tagger accepts a list of
tokens from a sentence and assigns a POS tag to each token.
The output from the preprocessing step is a list of tokens and
associated tags per extracted sentence. Most of the tokens in a
sentence can be extracted by simply splitting the sentence
string when a whitespace is observed. Although this works for
most tokens, some tokens such as I'll or won't are converted to
their expanded versions “I will” and “will not”. Other tokens
such as out-of-date and Sourceforge.net are not split into two
or more tokens. Tokens that contain periods such Mr. or U.S.
are retained as is.

B. Creating a Rule Set

The rule set used in the grammar checker is a collection of
four database tables. A tagged corpus and lists of stop words
and tags are used to build the set of rule database tables (see
Figure 2). The rule set is created once before the grammar
checker can be applied. A modified rule table must be re-
loaded in the database to take effect.

Unigrams
 The first table is the unigram table. This table contains the
most common tags for words in the dictionary. A POS tag y
that was assigned to a word x in fewer than 5% of all cases in
the tagger corpus is noted in a rule for x. Any sentence that
contains the word x tagged with y is considered a potential
error by the checker. The types of errors detected are pairs of
words that are used incorrectly such affect and effect or then
and than. For example, the probability of finding the word
affect used as a noun was less than 3% in the Brown corpus.
The unigram rule for the word affect will detect the erroneous
use of the word in the sentence below.

We submit that this is a most desirable affect of the laws
and one of its principal aims.

The grammar checker returns the following description -
“The word affect is not usually used as a noun, singular,
common” and the suggestion - “Refer to affect, did you mean
effect”. There are numerous other pairs of such words that are
often mixed up, such as bare / bear, accept / except, and
loose / lose.

Fig. 2 Create a Ruleset made up of Four Database Tables

Bigrams
The bigram tag table is constructed by observing tag

sequences in the corpus and computing a likelihood measure
for each tag sequence. Consider the erroneous sentence – “My
father fixing the computer.”. The tag sequences extracted from
this sentence and their likelihoods are shown in Table 1. The

START and END tags are added to the beginning and the end
of the sentence respectively.

TABLE I BIGRAM TAG SEQUENCES FOR AN ERRONEOUS SENTENCE.

Token Tag Sequence Likelihood Error

My START-PP$ 0.33 No

father PP$-NN 1.93 No

fixing NN-VBG -1.11 Yes

the VBG-AT 0.71 No

computer AT-NN 1.90 No

. NN-. 1.32 No

All the tag sequences in Table 1 have positive likelihoods

with the exception of the NN-VBG tag sequence. The
likelihood of this tag sequence is the likelihood of a verb or
present participle following a noun. It is negative since a
present participle is usually preceded by a present tense verb
such as is. These types of errors are found in sequences of
bigram tags.

Other types of bigram sequences include tag-word and
word-tag sequences. Words found in text are separated into
two sets – open class and closed class words. The open class
set contains mainly nouns, adjectives, verbs, and adverbs.
These words are numerous and together are found often in
text. The individual frequency of a noun or adjective is
typically small compared to the frequency of a closed class
word. Conjunctions, prepositions, and articles are fewer in
number but occur often in text. Golding [9] showed that it is
possible to build context models for word usage to detect
errors. The context of a word x that does not match the context
defined in the bigram table for x is a potential error.

The words that are used most frequently in the tagged
corpus are selected in a stop list that includes words such as –
the, and, of, and did. Consider tag-word rules for the word the
that model the context of tags before the stop word. An
adjective is rarely seen before the word the. The rule with the
“JJ-the” context will detect an error in the sentence – “Can
you make large the photo?”. Similarly in the sentence - “The
goal to find was who attended.” the word-tag rule for the
“was-WPS” context detects an error in the word sequence
“was who”. All three types of sequence rules – tag-tag, tag-
word, and word-tag are used to detect bigram error sequences
in sentences.

Trigrams

 The use of trigrams to model word / tag usage requires a very
large corpus. Consider the Brown corpus with roughly 100
POS tags. The maximum number of trigram tag sequences
that can be generated is one million. The number of words in

the Brown corpus is one million and is clearly not sufficient to
model the usage patterns of all possible trigram tag sequences.

 Instead, the problem is limited to modelling a much smaller
set of trigram tag sequences. The modelled set of tag
sequences represents tags that are frequently found in
grammatically incorrect sentences. For example in the
sentence - “I did not wanted to clean the room.”, the verb
want is used in the wrong tense. The sentence is correct if the
present tense of the word is used instead of the past tense. We
can collect pairs of such tags that are interchanged in
grammatically incorrect sentences. These tags form a stop tag
list that have one or more replacement tags that may fix the
error. The grammar checker returns the following description
and suggestion for the incorrect sentence above.

Description: The fragment not wanted to is rare.

Suggestion: Possible agreement error: Replace wanted with
verb, base: uninflected present ...

 The detector uses the tags before and after the stop tag to
build the context of the given sentence. The likelihood of the
tag sequence is extracted from the database table and
compared with the likelihood of another tag sequence that
replaces the stop tag with a substitute tag. An error is
generated when the likelihood of the tag sequence with the
substitute tag is much higher than the likelihood with the
original tag. Consider another incorrect sentence - “She come
to college late every day.”. The present tense of the verb come
is used instead of the past tense. Here, the grammar checker
returns -

Description: The fragment She come to is rare.

Suggestion: Possible agreement error: Replace come with
verb, past tense.

 The purpose of using trigrams is to identify errors that the
bigram tables fail to detect. For example, in the first sentence
the token sequences “not wanted” and “wanted to” are both
legitimate token sequences independently. However, the
combined tag sequence “not wanted to” is rare and is a
potential error. The replacement of the past tense tag with the
present tense tag produces a tag sequence that is more likely
than the original tag sequence. The checker generates errors
for cases where the replacement tag creates a more likely tag
sequence.

 This is not a fool-proof method, since the best possible
replacement tag cannot be predicted beforehand in a stop tag
list. An attempt is made to find the pairs of tags that are most
often mixed up in an error corpus. A stop tag may also have
more than one replacement tag. In such situations, the most
likely replacement tag is selected to compare with the
liklelihood of the original tag. Finally, a corpus larger than the

one million word Brown corpus is needed to accurately model
trigram tag sequences.

Quadgrams

 An extremely large corpus would be needed to model all
possible quadram tag sequences for the same reasons as the
trigram tag sequences mentioned earlier. The number of
possible quadgram sequences is very large and accurately
modelling the usage patterns of such a huge number of
sequences would require a corpus that is not currently
available. The space and time required to build a quadgram
model would be correspondingly large.

 The quadgram model is simplified to identify specific words
that are used in the wrong context. Quadgram sequences are
constructed for a set of stop words. These stop words
represent pairs of words like is / are, was / were, and there /
their. Consider the sentence - “A herd of horses are better
than a flock of sheep.”. The grammar checker returns with the
following description and suggestion:

Description: The fragment better than a is not usually
preceded by are

Suggestion:Possible agreement error: Replace are with is

 The checker begins by constructing two quadgrams when a
stop word is observed in the sentence. For example, in the
sentence above, the two quadgrams - “herd of horses are” and
“are better than a” are generated when the word are is seen.
All the words in the quadgrams are replaced by their
corresponding tags with the exception of the stop word (are).
The use of tags instead of the specific words themselves,
makes the quadgrams more general and easier to model with a
smaller corpus. The likelihood of both quadgrams with the
given stop word are, is evaluated using the Quadgram
database table.

 The stop word are is replaced with is in both quadgrams and
the likelihood of the modified quadgrams is extracted from the
database table as before. If the likelihood of the modified
quadgram substantially exceeds the likelihood of the original
quadgram, then the checker generates an error.

 The quadgram model is subject to the same types of
problems as the trigram model. We need to know beforehand
words that are frequently used incorrectly and the appropriate
replacement word. The type of words included in the
quadgram stop word list are seen in subject-verb agreement
errors. The stop word list used in the Emustru grammar
checker is made up of a few of these types of words. The size
of the Brown corpus may not be sufficient to build an accurate
model for these quadgrams.

 Long distance word dependencies in sentences are not
detected by the bigram or trigram table look ups. Such

dependencies occur when the subject and verb are separated
by one or more words. making it difficult for the bigram or
trigram checker to detect the low likelihood of a plural form
of a verb used with a singular form of a noun. The quadgram
table models some of these long distance word dependencies
that are missed in the earlier steps.

Error Model

 The spelling error model has been adapted to describe a
grammar error model. In the spelling error model, four
modification functions that operate at the character level are
used to correct the spelling of a word. For example, the
transpose function will interchange the letters i and e in the
mis-spelled word recieve to create the correct word receive.
One of more of these four functions can be used to correct any
mis-spelled word. The edit distance is a measure of the
number of times a modification function needs to be applied
to transform a mis-spelled word into the correct word. The
grammar error model uses the same functions as the spelling
error model, except that the modifications for the grammar
error model operate at the word level (see Table 2).

TABLE II TYPES OF GRAMMAR ERRORS.

Error Sentence

Delete Why did the chicken cross road?

Insert Who is the the chicken?

Transpose The chicken's food is from made soya.

Modify The number of chickens were large.

For example, the delete error in the first row of Table 2 is
corrected by applying the insert function that adds the word
the between the words cross and road. Similarly, the
transpose function transforms the word sequence “from made”
to “made from” in the third row of Table 2. The rules in the
ngram tables that detect these errors is shown in Table 3.
TABLE III DATABASE TABLES USED TO CORRECT ERRORS IN TABLE II.

Error DB Table Message
Delete Bigram

(tag-tag)
A noun is not usually followed by a noun
(refer to cross and road).

Insert Bigram
(word-tag)

The token the is not usually followed by
an article (refer to the and the).

Transpose Bigram
(word-tag)

The token is is not usually followed by a
preposition (refer to is and from).

Modify Quadgram
(tag-word)

The fragment number of chickens is not
usually followed by were (Possible
agreement error: Replace were with was)

This is a simplistic error model and does not make
distinctions between errors such as subject-verb agreements,
run-ons, and other grammatical mistakes. Although the error
model is unsophisticated, the descriptions and suggestions are

usually good enough for the user to correct an error. The part
of the sentence that contributed to the error is highlighted and
the automatically generated description explains why the
tag(s) or token were not appropriate in the sentence.

C. Applying a Rule Set

The input to the grammar checker is a list of tokens and
tags along with the stop lists for each of ngram checks. The
four ngram database tables are checked in order starting from
the Unigram to the Quadgram table (see Figure 3). The output
from the grammar checker is a list of possible errors.

Fig. 3 Applying a Ngram-based Rule Set to Detect Errors

 Each of the errors returned contains a description and a
suggestion. The text for these fields is automatically generated
and therefore not as precise as a message from a manually
generated rule. An unigram error states that a word is rarely
used with the assigned POS. A bigram error mentions that
either a word is not usually followed by a tag or two assigned
tags are rarely seen together. The trigram and quadgram errors
suggest some type of agreement error and propose alternate
tags or alternate words to correct a sentence.

IV. IMPLEMENTATION

 The Emustru grammar checker has been implemented in
Java using a number of open source tools that include
dictionaries, a tagged corpus, and the Google Web Toolkit
(GWT) (see Acknowledgments section). The Web-based
implementation uses the GWT to handle client requests and
display the list of results (see Figure 4).

 The client makes a request via a browser to a Php script on
the server. The Php script accepts a chunk of text passed by
the client and generates a temporary file containing the passed
text. The grammar checker is invoked by the Php script as a
jar file and the name of the temporary file in an argument list.

The results from the grammar checker are sent back to the Php
script in either a JSON or XML format. The Php script
forwards the string to the client. Finally, the client displays the
contents of the results in a table on the browser.

Fig. 4 Implementation of the Grammar Checker

 The grammar checker is embedded in an essay evaluator.
The results from the checker are shown in a tabbed window
along with other evaluation measures such as the vocabulary
usage, and spelling errors.

V. EVALUATION

The Emustru grammar checker has been evaluated using a
small corpus of 100 annotated sentences. A fraction (70%) of
the sentences are grammatically correct and the remainder
have one or more errors. This is a small corpus and a large
scale evaluation would use a wider variety of sentences and
errors to test the checker.

The corpus to test the grammar checker is a collection of e
sentences, out of which a sentences (a < e) are grammatically
incorrect. The grammar checker was run against the set of e
sentences to detect errors. The results of the test are shown in
Table 4.

TABLE IVGRAMMAR CHECKER EVALUATION

Actual Errors

Yes No

Flagged
Errors

Yes a b

No c d

where e = a + b + c + d. The value of a is the number of
errors that were actually errors and correctly flagged by the
checker. The value of b is the number of errors that were not
found by the checker. The value of c is the number of errors
that were wrongly identified by the checker. Finally, d is the
number of correct sentences that was assigned zero errors by
the checker.

Most of the sentences in the test corpus have been selected
from various news articles on the Web. News articles from

reputed sources have been proofread and can be presumed to
be error-free. A sample of sentences from news articles on
different topics were selected for the set of correct sentences.
The set of incorrect sentences were generated from the most
common types of grammatical errors mentioned on the Web.

Notice, this error corpus is not annotated to mention a
particular type of grammatical error. Instead, a sentence is
merely defined as correct or incorrect. Therefore, there is no
verification of error type detected to match a particular
grammatical error. Any error detected in a sentence that is
invalid is consided as a correctly flagged error and tabulated
in the value of a in Table 4. Currently, there is no standard
corpus for grammatical error detection and no standard format
to define a syntax error.

 Recall and precision are two standard evaluation parameters
used in Information Retrieval to evaluate the performance of
search engines. In this context, we can define recall as the
value a / (a + c) and precision as a / (a + b). Typically, recall
and precision are inversely related. i.e. high recall is
associated with low precision and vice versa. Consider an
extreme case where a = e and every sentence in the test
corpus is flagged as an error. Recall will be 1.0 or the
maximum since the value of c, the number of missed errors
will be zero. However, precision will be low since the value of
b, the number of wrongly detected errors will be high.

Conversely, the checker may flag a very small fraction of
errors that are obvious. In this case, the value of a will be very
small and correspondingly the value of b will be zero leading
to precision of 1.0. However the value of c, the number of
actual errors that were not flagged by the checker will be high
making recall low.

This problem of balancing recall and precision is fairly
common in other NLP tasks such as entity extraction and
sentiment analysis. The implementation in this paper attempts
to maximize precision with reasonable recall. In other words,
flagging an excessive number of errors is more annoying to
the user than allowing a few undetected errors.

We can vary the threshold higher or lower to detect fewer

or more errors respectively. The threshold should be high
enough to minimize the number of false positives, i.e. the
sentences the checkers believes are errors, but are actually
correct. In Table 4, this means that the checker should
minimize the value of b. Recall is controlled to a lesser extent
by minimizing the value of c, i.e. finding as many of the
actual errors as possible.

A third evaluation parameter is accuracy. This parameter
combines all the results in Table 4 into a single value. It is
defined as (a + d) / (a + b + c + d). Accuracy measures the
number of error sentences and correct sentences detected
relative to the total number of sentences.

Table 5 contains four sample sentences from the test corpus
of 100 sentences, two sentences each from the correct and
error categories. These sentences are similar in style to the
other sentences in the corpus. There is a large number of
grammatical error types and the test corpus covers some of the
common errors. The types of errors covered include subject-
verb agreement and the incorrect location of words in a
sentence.

TABLE VSAMPLE CORRECT AND ERROR SENTENCES

Category Sentence

Error I did good in this course.

Error Their is a major problem with this paper.

Correct It'll recover this year after the temporary adjustment.

Correct Some people survive much longer based on the tumor's subtype,
size, whether it has spread and the patient's age.

A test of the Emustru grammar checker with a likelihood
threshold of 6.5 gave an accuracy measure of 0.81 with the
values of 15, 4, 15, and 66 for the parameters a, b, c, and d
respectively of Table 4. The recall and precision measures
were evaluated using the same error corpus.

Fig. 5 Recall-Precision Plot for the Corpus of 100 sentences.

Figure 5 shows a fairly typical recall-precision plot that is
observed in other information retrieval applications. When
recall is high, precision is low and vice versa. The recall and
precision of the MS Word grammar checker for the same error
corpus was 0.433 and 0.684 respectively. The precision of the
MS Word grammar checker is set high enough to ensure that
very few false positives will be reported.

The accuracy of the Emustru grammar checker was varied
by altering the likelihood parameter (see Figure 6). The
likelihood was roughly proportional to the accuracy till a
threshold of about 6.0 and thereafter the accuracy was
relatively constant. We would expect low accuracy when the

likelihood is low since a large number of false positives will
be reported. The recall for low likelihoods is close to 1.0,
while precision is much lower at 0.3. At higher likelihoods,
the recall falls to about 0.5 and the precision rises up to about
0.79. The interface to the grammar checker on the client
allows the user to control the likelihood parameter by
adjusting the grammar level from very strict to liberal. The
highest accuracy with the Emustru grammar checker of 0.81
was a slight improvement over the accuracy of 0.77 with MS
Word.

Fig. 6 Accuracy-Threshold Plot for the Corpus of 100 sentences.

There are several reasons why the accuracy of the grammar
checker cannot be tweaked by adjusting the likelihood alone.
The first possible source of errors is a wrong sentence
boundary detection. Tokens from a sentence that is broken or
a combined sentence will be harder to tag accurately.
However, most sentence boundary detectors are very accurate,
if the text passed is filtered to remove text fragments such as
titles and table text. A second reason for low accuracy is the
assignment of the wrong POS tag. This happens in roughly
5% of all tokens and therefore the grammar checker cannot
possibly make an accurate judgement of a grammatical error.
Finally, the tagged corpus used to build the ngram Rule sets
may not accurately represent language usage patterns.

Performance

 A majority of the time to detect errors is spent running SQL
statements to search the four database tables. Roughly 1000
SQL select requests were required to check the error corpus of
100 sentences (2020 words). Roughly 50% and 25% of the
SQL statements were lookups of the bigram and unigram
tables respectively. The remaining 25% of the SQL statements
were primarily lookups of the trigram table. The time to run a
SQL select statement on an Intel P4 Dual-core machine with 1
Gbyte of RAM is a few milliseconds or less. Therefore, the
time to analyze a sentence is roughly 30 milliseconds or less.
The time to initially load the grammar checker is significant.
A Hidden Markov Model-based POS tagger that is used to

assign tags to tokens is read from a file. The time to read the 6
Mbyte POS tagger file at startup time is roughly 1.25 seconds.
The size of the database is shown in Table 6.

TABLE VI NUMBER OF ROWS IN NGRAM RULE SET TABLES

Table No. of Rows

en_unigrams 18,379

en_bigrams 10,463

en_trigrams 19,133

en_quadgrams 17,080

Total 65,055

VI. CONCLUSIONS

 The design and implementation of an open source grammar
checker has been described. A statistically-based grammar
checker for English has been shown to produce reasonable
results compared with another grammar checker on a popular
word processor. The ngram-based ruleset used to detect
grammatical errors is generated automatically from a tagged
corpus. The accuracy of the grammar checker can be
controlled by varying a threshold lower or higher to find more
of fewer errors.

 The grammar checker will be evaluated with a larger test
corpus to generate a more precise accuracy measure. It is
feasible to use the same design to check the grammar of a
different language. The main requirements are a tagged corpus
, a POS tagger for the language, a set of stop tags, and a set of
stop words. The generated ruleset is used to find grammatical

errors in the same way the checker was used to find errors in
the English language.

VII.ACKNOWLEDGMENTS

This work has been accepted as a project funded for a short
term Sarai FLOSS fellowship in 2008-09
(http://www.sarai.net/). The LAMP (Linux, Apache, MySQL,
and Php) platform has been used to build a Web-based
implementation of the grammar checker. The browser client
has been built using the Google Web Toolkit. The WordNet
and Unix dictionaries have been used as the word lists to
evaluate tokens. The API from LingPipe (http://www.alias-
i.com/) has been used to detect sentences. The Brown Corpus
[1] was used to build the set of ngram rules.

VIII.REFERENCES

[1] http://www.sscnet.ucla.edu/issr/da/index/techinfo/M0911.htm ,
The Brown Corpus.

[2] http://emustru.sf.net/,
The Emustru Project.

[3] http://www.languagetool.org/,
The LanguageTool multi-lingual grammar checker.

[4] E. Brill: A Simple Rule-Based Part of Speech Tagger, Proceedings of
the Third Conference on Applied Natural Language Processing,
Trento, Italy, 1992.

[5] E. Atwell, S. Elliot: Dealing with ill-formed English Text, The
Computational Analysis of English, Longman Publishers, 1987.

[6] C. Leacock, M. Chodorow, Automatic Grammatical Error Detection,
Automated Essay Scoring: A Cross-Disciplinary Approach, Lawrence
Erlbaum Associates Publishers, 2003.

[7] Y. Attali, J. Burstein: Automated Essay Scoring with e-rater V.2, The
Journal of Technology and Assessment, Vol. 4, No. 3, Feb 2006.

[8] C.D. Manning and H.Schutze, Foundations of Statistical Natural
Language Processing, MIT Press, 1999.

[9] A. Golding, A Bayesian hybrid for context sensitive spelling
correction, Proceedings of the Third Workshop on Very Large
Corpora, pp 39-53. 1995.

http://www.sarai.net/
http://www.languagetool.org/
http://emustru.sf.net/
http://www.sscnet.ucla.edu/issr/da/index/techinfo/M0911.htm
http://www.alias-i.com/
http://www.alias-i.com/

